Abstract
Background
A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover, biomechanical studies to date have not considered newer designs of IM nails which have been specifically designed to better distribute weight-bearing loads. This aim of this experimental study was to evaluate the re-fracture risk produced by a newer type of nailing system compared to an equivalent plate.
Methods
Experimental testing was conducted using fourth generation Sawbones composite femurs and X-Bolt IM hip nail (n=4) and fracture plate (n=4) implants. An unstable pertrochanteric fracture pattern was used (AO classification: 31-A1 / 31-A2). Loading was applied along the peak loading vector experienced during walking, up to a maximum load of 500N. The risk of re-fracture was evaluated from equivalent strains measured using four rosette strain gauges on the surface of the bone at known stress riser locations.
Results
Strain gauge readings determined that the equivalent strains in the femoral diaphysis were approximately 25% larger for the nail than the plate (p < 0.005). The strain levels at the location coinciding with the end of the plate were also larger for the nail, but not significantly (p > 0.26).
Conclusions
Although the risk of re-fracture for displaced tronchantaric fractures was found to be larger for nailing than plating, measured strains were substantially lower than the failure strain of cortical bone (even when scaled for full weight-bearing loads of 1800N). This indicates that fracture risk is not present in either implant for bone of healthy quality, but may still become problematic in highly osteoporotic patients.
Level of Evidence
IIb - Evidence from at least one well designed experimental trial.