Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287).
Design of bone tissue engineering scaffolds imposes a number of requirements for their physical properties, in particular porosity and mechanical behaviour. Alginates are known as a potential material for such purposes, usually deploying calcium as a cross-linker. Calcium over-expression was reported having proinflammatory effect, which is not always desirable. Contrary to this, barium has better immunomodulatory outcome but data for barium as a cross-linker are scarce. In this work the objective was to produce Ba-linked alginates and compare their viscoelastic properties with Ca-linked controls in vitro. Sodium alginate aqueous solution (1 wt%) with 0.03 wt.% CaCl2 is gelled in dialysis tubing immersed in 27 mM CaCl2 (controls) or BaCl2, for 48 h, followed by freeze-drying and rehydration (with 0.3 wt.% CaCl2 and 0.8 wt.% NaCl). Hydrogel discs (diameter 8-10 mm, thickness 4-6 mm) were assessed in dry and wet (DMEM immersed) states by dynamic mechanical analysis (DMA) under compressive creep conditions with increased loads, frequency scans and strain-controlled sweeps in physiological range (0.1-20 Hz) at 25°C and 37°C. Resulting data were analysed by conventional methods and by a model-free BEST (Biomaterials Enhanced Simulation Testing) to extract invariant values and material functions. Significant differences were observed in properties of Ba-linked hydrogel scaffolds vs. Ca-linked controls. Specifically, for the similar porosity Ba-samples exhibited lower creep compliance, higher dynamical stiffness and lower loss factor in the whole studied range. Invariant modulus exhibited a non-linear decay vs. applied stress. These differences were observed in both dry and wet states and temperatures. Use of barium as a cross-linker for alginates allows further modification of biomechanical properties of the scaffolds for better compliancy to the tissues in the application. Barium release might have an immunomodulating effect but also promote ion exchange for osteogenesis due to additional Ca/Ba concentration gradient.
Orthopedic metallic medical devices are essential in the treatment of a wide range of skeletal diseases and disabilities. However, they are often related with surgery complications due to acute prosthetic joint infections (PJI) causing devastating complications. Gallium (Ga) antibacterial activity has been recently demonstrated: in aqueous solutions, Ga ionize in a trivalent form Ga3+ that can replace Fe3+ in bacterial metabolism thus leading to bacteria death. However, it is not yet clear whether such effect is typical to Ga3+ release, and how this would affect longer term performance. Here we investigated Ga addition into titanium alloys using metallurgical methods. The study has confirmed that metallurgical addition of gallium even in small amounts (1–2% wt.) to titanium alloys have highly efficient antibacterial function without any visible cytostatic or cytotoxic effects. The presence of gallium within the metal matrix might ensure that antibacterial effect will persist for a long time towards multi-drug resistant
Evaluation of different biomaterials is being performed with various methods trying to simulate the closest hostile-like Here we are presenting another approach based on high-output screening of biomaterials, which is based on the strategy of raising the number of readouts obtainable from every specimen at more clinically-relevant conditions. On the contrary to common methods like ISO 10993 or simplified biomechanical tests, the biomaterials enhanced simulation testing (BEST) evaluates specimens without pre-selected biomaterial model, assessing the whole specimen as would happen in the implantation site. Besides reducing the risk of improper conclusions caused by wrong material model choice, the data processing with non-local method intrinsically includes the test history bypassing common challenges usually seen with hereditary integration. For properly designed experiment, readouts might include invariant moduli, viscous stiffness, fluidity, fluid permittivity and diffusivity (without need for pressure-driven separate tests), fluid source, effective channel size, and swelling pressure (if swelling is present) in addition to conventional biomechanical parameters. New solutions in advanced and consistent evaluations for biomaterials allow better risks control, shorten lead development time and costs, and compliant with 3R-strategy (2010/63/EC) and new regulatory requirements (2012/0266/COD in EU and FY2017 regulatory priorities by FDA). The approach shown is able to combine scientifically based tests with multi-purpose protocols to secure patient safety by screening of biomaterials under proper conditions. The authors thank Finnish Agency for Innovations (Tekes) for providing partial financial support.
Use of scaffolds for articular cartilage repair (ACR) has increased over the last years with many biomaterials options suggested for this purpose. It is known that scaffolds for ACR have to be optimally biodegradable with simultaneous promotion of chondrogenesis, favouring hyaline cartilage formation under rather complex biomechanical and physiological conditions. Whereas improvement of the scaffolds by their conditioning with stem cells or adult chondrocytes can be employed in bioreactors, “ideal” scaffolds should be capable of performing such functions directly after implantation. It was previously considered that scaffold structure and composition would be the best if it mimics the structure of native cartilage. However, in this case no clear reparative stimuli are being imposed on the scaffold area, which would drive chondrocytes activity in a desired way. In this work, we studied new xeno-free, recombinant human type III collagen-laden polylactide (PLA) mesh scaffolds, which have been designed, produced, and biomechanically optimized It was experimentally shown that success of the scaffolds in ACR eventually require lower stiffness than surrounding cartilage yet matching the strain compliance, different in static and dynamic conditions. This ensures an optimal combination of load transfer and oscillatory nutrients supply to the cells, which otherwise is difficult to rely on just with a passive diffusion in avascular cartilage conditions. The results encourage further development of such scaffold structures targeted on their best clinical performance rather than trying to imitate the respective original tissue. The authors would like to thank Finnish Agency for Innovation (Tekes) for providing financial support to this project. A.Z. also acknowledges Teknos Foundation (Finland) for the scholarship.
For evaluation of orthopaedic biomaterials the closest hostile-like in vitro environments are desirable with relevant control of chemical, biological, mechanical etc. parameters. For faster screening and reduction of time and costs, combination of different critical key parameters in minimal tests is needed. New trends also favour minimisation of in vivo (2010/63/EC, towards replacement technology) and clinical tests (2001/20/EC, 2005/28/EC) for new products yet not compromising risks. Biomaterials manufacturers also are interested in shortening of the time-to-market keeping conformity to essential requirements and withstanding the simulated “worst case” conditions (2003/94/EC). Here we show the new approach of the creation of conditions closest to real life and applications, based on scientifically designed and optimised models, aiming on predictive outputs. With new device and designed protocols, several biomaterials for orthopaedic applications were analysed: titanium, biodegradable fibrous scaffolds and hydrogels. Creation of several favourable conditions for different tissues type formation took place on the surface of the porous titanium specimen. Such conditions could be designed for measurement of the cells proliferation and e.g. simultaneous bacterial adhesion with rather high precision. The method has been compared in independent laboratories for hydrogels with other measuring techniques and shown the benefits of the method especially in more precise control of biomechanical cues. It was observed that significant amount of data are containing in the recorded signals which underlines the importance of correct and holistic data post-processing. The protocols can be furthermore tailored to simulate different conditions, such as for specific positions in tibia, or humeral etc., and combined with patient-specific biomechanics (soft tissues) for customised implant design. The financial support from the Finnish Agency of Innovation (Tekes) is gratefully acknowledged. Author has no competing financial or conflicting interests.
Hydrogels as scaffolds provide a suitable environment for the cells (biocompatibility, biodegradability). Their biomechanical properties are very important to provide not only direct support to the surrounding tissue but also provide a local microenvironment. There is an interest in composite hydrogels with hydroxylapatite or bioactive glass (BAG) for tuning of their bioactivity and biomechanical properties [1]. Hydrogels were prepared from a polysaccharide gellan gum (GG), dissolved in ultrapure water at 90°C under constant stirring to a final concentration of 2 wt.% GG. Sodium-free BAG (70 wt.% SiO2, 30 wt.% CaO) was synthesized using a sol-gel technique with particles of ∼100 nm, clustered to ∼10 µm large agglomerates [1]. The hydrogel composites were prepared by admixing up to 2–8 wt.% of BAG powder into a solution of GG during sonication, and pouring the hot BAG-GG suspension with following cooling to room temperature. Mechanical properties were evaluated using different protocols in creep (0.1 to 1.2 N), strain sweep (1 to 20 µm) and frequency scan (100 to 0.1 Hz) modes, with specimens immersed in water at 25°C. Maximum load (or deformation) before breaking of scaffold materials is a very important material property but is rarely measured. Here creep experiments at different applied stresses were carried out first. These loads exert more proper stress on the scaffold material that results in deformation, which is not the same as during deformation in relaxation or stress-strain tests [2]. The second set of experiments was made at physiologically relevant conditions (1 Hz frequency and small amplitude-controlled deformation) [3]. Amount of 2% BAG was found to be sufficient to get nearly linear deformation in the whole measured strains region, but at higher concentration stress deviated from linearity at strains exceeding ∼0.5% at 1 Hz. Storage modulus (E') did not significantly change and the loss tangent was found nearly constant (∼0.1) for the whole frequency range, indicating a strong network structure of BAG-doped hydrogel. Additions of 2% BAG give a ten-fold increase in both storage and loss moduli, whereas further increase of BAG content does not show further stiffening. The application of tailored protocols [3] allowed analysis of dynamic, creep and relaxation tests in the same device with same specimens, which might be not possible for other techniques. Creep data would provide valuable information in addition to dynamic modes to predict long-term behaviour of the composite hydrogels. Properly tailored protocols could mimic, for example, articular cartilage or other tissue working conditions and allow evaluation of the side effects like swelling at early stage, which measurements are usually rather cumbersome.
For a meaningful evaluation of biomaterials, Commercial Hyalograft® and ChondroGide® scaffolds were compared to a new experimental recombinant human collagen-PLA (rhCo-PLA) [1] and pure PLA scaffolds under BEST protocol [2] in pseudostatic (creep), dynamic (frequency scans, strain sweeps), and combined conditions (simulated operative periods) relevant for orthopaedic applications. Temperatures 25–37°C, dry and fully immersed wet (water, 0.9% NaCl) conditions were analysed and aggregate, complex dynamic moduli and loss factor were obtained. Additionally a method was developed for estimation of the swelling pressure under variable compression. ChondroGide and rhCo-PLA were compared All scaffold materials have a non-linear and non-uniform behaviour when immersed in a fluid, accompanied by rapid change in starting porosity (down for Hyalograft® and ChondroGide®, up for PLA), but nearly stable for rhCo-PLA. Too hydrophilic materials exhibited partial non-wetting (dry spots) under a slight compression eventually by closure of the specimen rim due to elastocapillary effect, where as hydrophobic (PLA) shown substantial expansion. The swelling pressure of PLA was measured of ∼1 kPa (water, 25°C). Observed creeping cannot be reliably fit with simple viscoelastic models, but can be approximated with biphasic theory with variable complex moduli and permittivity values. No significant differences were observed in creep for 1 h and 5 h runs, showing that a shorter time is sufficient to catch the main effects in these biomaterials. No substantial differences were observed between water and NaCl solution at 37°C, except for ChondroGide® which swells in NaCl more than in water. Besides of some differences in swelling, no significant differences observed between 25 and 37°C tests for creep. For dynamic conditions all materials undergo densification and “stiffening” (50% and more) upon cyclic strain deformation, with the effect being higher at 37°C than at 25°C. rhCo-PLA scaffolds exhibit relatively stable modulus in water and loss factor with physiologically-compatible behaviour (∼0.1 with a minimum values range around 1 Hz) at frequency scans (0.01–20 Hz). On the contrary, ChondroGide® has the highest loss factor (up to 0.6–0.7). Water at 25°C seems to be sufficient to rapidly test these kinds of materials for biomechanical screening, unless additions or specific effects are of interest. The applied deformation level is more important to predict materials properties in dynamic conditions than experiment time. This means that better