header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

METALLURGICAL GALLIUM ADDITIONS DEMONSTRATE A STRONG TIME-INCREASING ANTIBACTERIAL ACTIVITY WITHOUT ANY CELLULAR TOXICITY

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

Orthopedic metallic medical devices are essential in the treatment of a wide range of skeletal diseases and disabilities. However, they are often related with surgery complications due to acute prosthetic joint infections (PJI) causing devastating complications. Gallium (Ga) antibacterial activity has been recently demonstrated: in aqueous solutions, Ga ionize in a trivalent form Ga3+ that can replace Fe3+ in bacterial metabolism thus leading to bacteria death. However, it is not yet clear whether such effect is typical to Ga3+ release, and how this would affect longer term performance. Here we investigated Ga addition into titanium alloys using metallurgical methods. The study has confirmed that metallurgical addition of gallium even in small amounts (1–2% wt.) to titanium alloys have highly efficient antibacterial function without any visible cytostatic or cytotoxic effects. The presence of gallium within the metal matrix might ensure that antibacterial effect will persist for a long time towards multi-drug resistant S. aureus, which might not be possible if gallium or other metal are only in thin degradable coatings or similar formulations. A 5-logs decrease in CFU number was detected for alloys with 2% Ga and more after 72 h (alamar blue and CFU count assays). The alloys also show to be in vitro cytocompatible with both mature U2OS osteoblasts and progenitor pre-osteoblasts hFOB. Since gallium is metallurgically analogous to aluminium in titanium alloys, it might be used without affecting other alloy properties.


Email: