The introduction of a new implant material is not without risk. A series of worst-case scenarios were developed and tested accordingly to answer questions such as: what will happen if the implant is not placed in a good orientation? What will happen to the material after a long implantation time, e.g. 20 or more years? To reach a higher level of safety, a new approach for the preclinical testing has been taken. The vitamys® material (a novel vitamin-doped HXLPE) followed a severe pre-clinical testing protocol, including mechanical, tribological and biocompatibility testing. The testing includes a comparison of vitamys® vs. standard-UHMWPE and other HXLPE after accelerated ageing for periods equivalent to 20 and 40 years in-vivo. Hip simulator testing was done at inclination angles from 35° to 65° to assess the “forgiveness” of the material for mal-orientation. Comparing the test results to published data, it becomes evident that the vitamin addition and the sequence of the manufacturing steps both have a significant effect of the resulting mechanical, ageing and wear properties. In contrast to UHMWPE or HXLPE without antioxidant, the vitamys material behaves in a very “forgiving” manner: Hip simulator testing of vitamys at high inclination angles and even with severely aged material revealed no increase of wear rates. The vitamys material was first introduced in a monoblock polyethylene cup with a thin Ti-particle coating, the RM-Pressfit vitamys® acetabular cup (Mathys Ltd Bettlach, Switzerland). Its first implantation occurred in Sept. 2009. Since then, a total of nearly 500 implantations have been documented in a prospective multi-centre clinical study involving 11 clinics in 5 countries (CH, DE, FR, NL and NZ). Based on the pre-clinical testing and its first clinical experience, we have reason to believe that the RM-Pressfit vitamys® possesses interesting and unique features such as high elasticity (no stress-shielding), high ageing and wear resistance combined with clinically proven biological anchorage – making it theoretically suitable for a whole range of patients, including the young and active.
The use of peritumoral oedema on magnetic resonance (MR) imaging to predict soft tissue tumour grade is controversial. The clinical significance of oedema visualised on MR scans is poorly defined in the literature. We undertook this study to ascertain a diagnostic relationship between peritumoral oedema surrounding soft tissue sarcomas and the histological grade of the tumour. One hundred and ten consecutive soft tissue tumours were extracted from the New Zealand Bone and Soft Tissue Tumour Registry. Key inclusion criteria were tumours deep to fascia, measuring more than 5cm in any dimension. Both benign and malignant sarcomas were included. MR scans and histology were reviewed, separately and in random order by a single author. Histology was graded as benign, low or high grade (based on the American Joint Committee on Cancer grading system). Peritumoral oedema was defined as the increased signal intensity, on T2 or STIR images, immediately surrounding a discrete lesion. It was measured on two or more planes with the largest value used in diagnostic calculations. Oedema greater than or equal to 20mm was defined as a positive test result. Twenty five random scans were double read to ensure inter-observer reliability Data was obtained for 83 tumours, 36 benign and 47 malignant (34 high grade and 13 low grade). The tumours in all groups were matched for size. The mean peritumoral oedema was 10.5mm for benign tumours, 20.6mm for low grade sarcomas (p<0.1), 28.1mm for high grade tumours (p<0.01) and 26.1mm if all malignant tumours were included as a single group (p<0.01). Using peritumoral oedema as a diagnostic test for tumour grade resulted in a specificity of 72%. The highest diagnostic ability was found when comparing benign to high grade tumours which yielded sensitivity of 59% and a positive likelihood ratio of 2.1. This data suggests a high false negative rate and that the test adds little to the diagnostic process. To our knowledge this is the first study which assesses the diagnostic accuracy of peritumoral oedema to predict the histological grade of soft tissue sarcomas. Our results show a statistically significant difference, in surrounding peritumoral oedema, exists when comparing benign to high grade sarcomas and to all malignant tumours. This relationship is not apparent for low grade tumours. As a diagnostic test, using only peritumoral oedema to predict histological grade is unreliable.