header advert
Results 1 - 14 of 14
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 105 - 105
1 May 2016
Oshima Y Takai S Fetto J
Full Access

Background

Total knee arthroplasty (TKA) is the highly developed procedure for sever osteoarthritic knee, in which there are two major concepts; Cruciate Retaining design (CR) and Posterior Stabilized design (PS). The femoral roll back movement is enforced with the post-cam mechanism in the PS, however, this structure associates with the complications, i.e. wear and dislocation. The CR has been developed to obtain the knee stability with native posterior cruciate ligament (PCL) in TKA. However, the preservation of the PCL can limit knee exposure and increase the technical challenge of surgery. We hypothesized that the knee exposure was easily achieved after the PCL was released, however, the PCL was repaired and the posterior stability was re-established after the TKA with time if it was released subperiostealy.

Objective

The objective of this study was to evaluate the varying of the posterior stability after the PCL-released CR TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 132 - 132
1 May 2016
Fetto J Oshima Y
Full Access

This is a minimum 15 year follow up of a cohort of 58 patients (30 men and 28 women) who underwent 62 non-cemented THR between 1998–2000 (54 unilateral, 4 bilateral), in whom an off-the-shelf “lateral flare” femoral component was implanted. These surgeries were performed by a single surgeon and have been followed continuously by that same surgeon. The mean age at the time of surgery was 60.4 yrs (52–74). There were no exclusions for osteoporosis or type “C” femoral geometry. Although some patients have deceased during these 15 years, there have been no stem failures, revisions or impending stem revisions at the time of follow up or at the time of death in those who have passed. Two patients have undergone revision of their acetabular liner for poly wear. There have been no complaints of thigh pain; and like the results seen in other series employing this stem design, there has been no evidence of bone loss due to stress shielding or subsidence of the femoral component in any of these patients.

This mid-term follow up re-affirms the dynamic tension band model of hip biomechanics, upon which the “lateral flare” design is predicated. This model predicts that the proximal lateral femur can experience compression during the gait cycle and as such can be utilized as an additional base of support upon which the femoral component can rest. Rather than relying upon a traditional “press fit” technique to achieve initial implant stability, a technique which is highly dependent upon femoral geometry, bone quality and may risk fracture on implant seating, the “lateral flare” design permits a gentler, safer and more physiologic means of achieving initial implant stability necessary for osseous integration to occur. This alterantive terchnique has been termed a “rest fit”.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 129 - 129
1 Jan 2016
Fetto J
Full Access

The stem of a femoral component can be helpful in assuring proper implant orientation. However, recent interest in short femoral components with which to better accommodate smaller incisions has resulted in technical challenges to proper implant positioning. In order to avoid component malposition and potential compromise of implant longevity, surgeons may rely upon intra-operative x-rays. However this has major drawbacks: radiation exposure of the OR staff; and accommodation of x-ray equipment without compromise of operating field sterility.

There has been created a simple, precise instrument which will ensure proper implant positioning in varus/valgus and flexion/extension planes without the need of intra-operative x-ray. Its reliability has been confirmed by both cadaveric and clinical studies. It has been demonstrated to be 100% accurate in providing proper short femoral component positioning.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 127 - 127
1 Jan 2016
Fetto J
Full Access

Thromboembolic (TE) events and related wound issues are the most common post-operative complications related to lower extremity total joint arthroplasty. They represent not only significant morbidity but also serious economic consequences. Evolution has selected for thrombus formation as a protection against exsanguination. Trauma is by definition a thrombogenic event. As surgery is an elective trauma, it is understandable that an individual undergoing a surgical procedure will be at increased risk to develop a TE event. However, to treat all patients with an identical prophylaxis denies the reality that the population is not homogeneous. Rather it is a normal distribution with wide variability from hemophyllic to thrombophyllic. As a consequence some patients may be over treated with resultant wound complications, i.e. hematomas, drainage, delaying discharge or worse requiring re-admisssion, re-operation or worst of all a secondary infection of the implanted device.

For this reason we proposed an inexpensive pre-operative screening protocol to more objectively identify an individual's levelof thrombophyllia. Although not exhaustive, it identifies those patients at ends of the curve with either an increased risk of clot or bleeding. It includes: Factor VIII, Factor V (Leyden), Factor C (APCR), Fibrinogen, D-dimer, Prothrombin Gene Mutation, ESR and CRP. This protocol costs less than $200/patient and was found to be 100% predictive of patient risk. Since instituting this protocol we have eliminated re-admission for complications related to overly aggressive TE prophylaxis. It has become an invaluable and intergral part of our pre-, intra- and post-operative protocol for multimodal TE prophylaxis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 128 - 128
1 Jan 2016
Fetto J
Full Access

Recent introduction of short femoral implants has produced inconsistent outcomes. There have been reports of early aseptic failure as high as 30% within 2 years of implantation. This is in spite of the fact that these short components are shortened versions of existing successful non-cemented designs. The mode of initial fixation in non-cemented implants has been investigated. It has been demonstrated that long term survivability is dependent upon osseous integration; and that osseous integration requires secure initial implant fixation. Traditional non-cemented implants achieve initial fixation analogous to that of a nail in a piece of wood: friction and displacement (with resultant hoop stress). Initial fixation, of a traditional non-cemented femoral component, is directly proportional to surface area contact between the implant and endosteal bone and/or three point fixation. By reducing stem length, contact area may be significantly reduced, thereby increasing stresses over a smaller area of contact. The result of this is to potentially compromise fixation/implant stability against micromotion occurring in the early post-operative period. These stresses are most poorly resisted in flexion/extension and rotational planes about the long axis of the femur. In addition, force applied in an attempt to achieve initial fixation with a short stem may lead to an increased risk of periprosthetic fracture at the time of implantation.

We propose that there is an alternative mode of initial fixation, a “rest fit”, that may avoid both the risk of femoral fracture as well as provide better initial implant stability. To assure a maximal initial fixation and resistance to post-operative stresses which may compromise initial implant stability and osseous integration, a short implant should have three distinct geometric features: a medial and lateral flare, a flat posterior surface and a proximal trapezoidal cross section. The first will provide stability against subsidence and varus migration, by resting upon the proximal femur. A flat posterior surface will maximize load transmission to the femur in flexon/extension activities; and an asymmetrical proximal cross-section will provide resistance against rotational stresses about the long axis of the femur during activities such as stairclimbing. Together these features have been throproughly evaluated by FEA and in vitro testing. We are reporting on the shoprt term follow up (2.5 years avg.) first 300 short stems which have employed a “rest fit”. There have been no aseptic failures or revisions for mechanical failure of these implants.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 111 - 111
1 Jan 2016
Oshima Y Fetto J
Full Access

Introduction

Pulmonary emboli (PE) after total hip and knee arthroplasties is an uncommon event. However, once it happens, it may results in sudden death. Thus, the prophylaxis of venous thromboembolism (VTE), including symptomatic deep vein thrombosis (DVT) and PE, is one of the challenging trials for Orthopaedic surgeons. Many procedures have been developed, e.g. early mobilization, compression stocking, intermittent pneumatic compression (IPC) devices, and anticoagulation agents. However, the most effective treatment for prophylaxis against VTE after the arthroplasties remains undecided.

Recently, many low molecular weight heparin (LMWH) agents are developing, and these are strongly effective for anticoagulation. However, these agents sometimes lead to bleeding complications, and result in uncontrolled critical bleeding. We are introducing our protocol with conventional aspirin as VTE prophylaxis after the arithroplasties.

Patients and methods

All patients prior to the surgeries are evaluated laboratory and duplex venous ultrasonography examinations to exclude thrombophilic or hemophilic conditions, and existence of DVT. Then, the thrombophilic, and also prolonged immobility, obesity, malignant tumors, cardiovascular dysfunction and DVT patients are regarded as high risk for VTE. These are offered a prophylaxis consisting of a removable inferior vena cava (IVC) filter, together with anticoagulant medication. Usually, the filter is removed three months after the surgery. In other patients, the arthroplasties are carried out under the spinal or epidural anesthesia with IPC on both feet. IPC is also applied, except for the periods of ambulation, usually two to three days of hospitalization after surgery. Full weight bearing ambulation with a walker is allowed on post-op day one.

Patients receive aspirin (acetylsalicylic acid) 325 mg daily for six weeks starting the night of surgery. Pain is controlled with celecoxib (COX-2 selective nonsteroidal anti-inflammatory drug) 400 mg daily, and oral narcotics for break through pain. Before discharge, usually within three days post surgery, all patients are evaluated DVT by duplex venous ultrasonography. The incidence of blood loss, wound complications, and subcutaneous ecchymosis are recorded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 110 - 110
1 Jan 2016
Oshima Y Fetto J
Full Access

Introduction

Femoral neck fracture is a common injury in elderly patients. To restore the activity with an acceptable morbidity and to decrease of mortality, surgical procedures are thought to be superior to conservative treatments. Osteosynthesis with internal fixation for nondisplaced type, and hemiarthroplasty or total hip replacement (hip arthroplasties) for displaced type are commonly performed.

Cemented arthroplasty has been preferred over non-cemented arthroplasty because of less postoperative pain, better mobility and excellent initial fixation of the implant, especially for osteoporotic and stove-pipe bones. However, pressurizing bone cement may cause cardiorespiratory and vascular complications, and occasionally death, which has been termed as “bone cement implantation syndrome”. To avoid the occurrence of this syndrome, non-cemented implants have been developed. However, most implants with the press fit concepts and flat wedge taper designs have a risk of intraoperative and early postoperative periprosthetic fracture.

Recently, we have employed a non-cemented femoral component, which has a lateral expansion to the proximal body as compared to a conventional hip stem. Because of this shape, which is called a “lateral flare”, this stem provides a physiological loading on both the medial and lateral endosteal surfaces of the femur. This is in contrast to conventional hip stem which prioritizes loading on the medial and metaphyseal /dyaphyseal surfaces of the femur. Moreover, the cross section of this stem is trapezoid with the flat posterior surface. This shape provides the stem with rotational stability along the long axis of the femur, and maximizes loading transfer to the posterior aspect of the proximal femur. These mechanical features avoid the need for aggressive impaction of the stem at the time of insertion. It is necessary to only tap gently to achieve the secure initial implant fixation by a “rest fit”. Thus, this technique reduces the risk of fracture.

Patients and methods

We employed this technique using a non-cemented lateral flare design device for displaced femoral neck fractures since 1996. Surgical procedures were performed with posterior approach under the spinal or epidural anesthesia. Full weight bearing ambulation with a walker was allowed on post-op day one.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 305 - 305
1 Dec 2013
Fetto J
Full Access

355 non-cemented MOM arthroplasties, of a single surgeon, with a follow up of 3–16 years (avg. 7.5 years) were retrospectively reviewed for evidence of pseudotumor and aseptic mechanical failure. There were 186 with 28 mm heads, 126 with 34 mm heads, 47 with 38 mm heads, from a single manufacturer.

There were 5 revisions of 38 mm heads for atraumatic painful “metalosis” 4–8 years after implantation (10.7%).

There were 4 revisions of 34 mm heads for post-traumatic instability (dislocation) with secondary metalosis 4–7 years after implantation (3.1%)

There were 2 revisions of 28 mm heads for post-traumatic instability (dislocation) with secondary metalosis 6–12 years after implantation (1.1%).

There were 5 patients, all with 38 mm heads, with asymptomatic “psoas bursae” with elevated serum CR and Co levels (1.0–3.0).

All of the failed THR's had acetabular components with lateral tilt <50 degrees (35–50), and anteversion angles <15 degrees (0–15). 2 of the 34 mm and both 28 mm instabilities were the consequence of injuries sustained in motor vehicle accidents. The remaining 2 instabilities with 34 mm implants were the result of mechanical falls.

Particulate debris, whether secondary to polyethylene, ceramic or metal articulations has been well documented as a cause of synovitis and damage to bony and soft tissues adjacent to a THR. This debris appears to be the result of material wear and mechanical failure with use over time. Unlike native articular cartilage, these materials are incapable of self-lubrication. Therefore THR articulations are dependent upon the penetration of ambient synovial fluid to provide lubrication of the replacement surfaces. This study suggests that increase in head diameter may reduce penetration of synovial fluid between the articulating surfaces of a THR, compromising the lubrication of bearing surfaces; thereby contributing to accelerated wear and premature failure of larger MOM arthroplasties.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 55 - 55
1 Dec 2013
Fetto J Walker P
Full Access

Published investigations with custom short stems have reported very encouraging results (Walker, et al, 1). However, off-the-shelf (OTS) versions of shorter length prostheses has not met with the same success.

Several basic questions must be addressed. First, what is the purpose of a stem? Second, can stem length be reduced and if so by how much can this be safely done. Third, what are the effects of stem shortening and are there other design criteria which must take on greater importance in the absence of a stem to protect against implant aseptic failure.

To examine these issues a testing rig was constructed which attempts to simulate the in vivo loading situation of a hip, Fig. 1 (Walker, et, al.). Fresh cadaveric femora were tested with the femora intact and then with femoral components of varying stem length implanted to examine the distribution of stresses within the femur under increasing loads as a function of stem length. This was correlated with observations of prospective DEXA measurement of proximal femoral bone mass and implant migration following THR (Leali, 3). We then initiated a prospective multi-center study of a specific short stem design which included three geometric features to ensure initial implant stability. This report documents that after 2 years, in the first 200 stems implanted, this design has been shown to provide stability against subsidence, flexion/extetnsion and rotational forces. This is consistent with the findings of the in-vitro studies and identical to the previously published clinical results of a similarly designed full length version of this same stem.

Our studies indicated that a stem is not an absolute requirement in order to achieve a well functioning, stable implant. Initial stability can be achieved in the absence of a stem, by a “rest fit,” if adequate design features are incorporated. These studies also demonstrated that simply reducing the length of an existing implant to accommodate changes in surgical techniques may not be a reasonable or safe design change. Such shortened versions of existing stem designs must undergo rigorously in-vitro testing and clinical validation before being released for implantation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 304 - 304
1 Dec 2013
Arno S Fetto J Bell C Papadopoulos K Walker P
Full Access

INTRODUCTION:

The purpose of this study was to determine if a short femoral stem (Lima Corporate, Udine, Italy) would result in a strain distribution which mimicked the intact bone better than a traditional length stem, thereby eliminating the potential for stress-shielding.

METHODS:

A 2 mm thick moldable plastic (PL-1, Vishay Micromeasurements, Raleigh, NC) was contoured to six fourth-generation composite femoral bones (Pacific Research Laboratories, Vashon, WA). The intact femurs were then loaded (82 kg) in a rig which simulated mid-stance single limb support phase of gait (Figure 1). During testing, the femurs were viewed and video recorded through a model 031 reflection polariscope. Observing the photoelastic coating through the polariscope, a series of fringes could be seen, which represented the difference in principal strain along the femur. The fringes were quantified using Fringe Order, N, as per the manufacturers technical notes. In order to analyze the strain distribution, the femur was separated into 6 zones, 3 lateral and 3 medial, and the maximum fringe order determined. Upon completion of testing of the intact femur, the short length femoral stem was inserted and tested, and finally the traditional length femoral stem was inserted and tested. Anterior and lateral radiographs were obtained of the femur with each femoral stem in order to confirm proper alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 172 - 172
1 Mar 2013
Fetto J
Full Access

Recent trends in surgical techniques for THR, i.e. MIS and anterior approaches, have spawned an interest in and possible need for shorter femoral prostheses. Although, early clinical investigations with custom short stems have reported very encouraging results, the transition to off-the-shelf (OTS) versions of shorter length prostheses has not met with the same degree of success. Early reports with OTS devices have documented unacceptably high and significant incidences of implant instability, migration, mechanical/aseptic failure, and technical difficulty in achieving reproducible implantation outcomes. They have highlighted the absolute need for a better understanding of the consequences of changes in implant design as well as for improvements in instrumentation and surgeon training.

Two basic questions must be addressed. First, what is the purpose of a stem? And second, can stem length be reduced and if so by how much can this be safely done. What are the effects of stem shortening and are there other design criteria which must take on greater importance in the absence of a stem to protect against implant failure.

To examine these questions a testing rig was constructed which attempts to simulate the in vivo loading situation of a hip, fig. 1. Fresh cadaveric femora were tested with the femora intact and then with femoral components of varying stem length implanted to examine the distribution of stresses within the femur under increasing loads as a function of stem length.

Our studies indicated that a stem is not an absolute requirement in order to achieve a well functioning, stable implant. However in order to reduce the possibility of mechanical failure a reduced stem or stemless implant absolutely must have three important characteristics to its design. First, it must have sufficient medial/lateral dimension to provide stability against subsidence and varus stress; second it must have a flat posterior surface, parallel and in contact with the posterior endosteal surface of the proximal femur with which to maximize A/P stability against flexion/extension forces (As a consequence of this design feature, appropriate anteversion must be achieved in the neck region of the prosthesis and not by rotation of the implant within the proximal metaphyseal cavity of the femur); and third, the implant must also have a cross-sectional geometry that will stabilize against torsional loading about the long axis of the femur.

Therefore, simply reducing the length of an existing implant to accommodate changes in surgical techniques may not be a reasonable or safe design change. Such shortened versions of existing stem designs must be rigorously tested before being released for general use. The required design parameters outlined above have been clinically validated in custom fabricated implants. They have been shown to reduce aseptic loosening and migration of a short stem femoral implant. This report will provide the clinical review of a multi-center experience with the first 200 off-the-shelf “Lateral Flare” short stem implants.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 73 - 73
1 Sep 2012
Iguchi H Watanabe N Tawada K Hasegawa S Kuroyanagi G Murase A Murakami S Fukui T Kobayashi M Fetto J
Full Access

Introduction

To obtain a better range of motion and to reduce the risk of dislocation, neck and cup anteversion are considered very important. Especially for the reduction of the risk of dislocation, the mutual alignment between neck and cup anteversion (combined anteversion) is often discussed. A surgeon would compare the neck direction to the calf direction with the knee in 90 degrees flexion. When an excessive anteversion was observed, the neck anteversion would be reduced using modular neck system or setting the stem a little twisted inside the canal with the tradeoff of the stem stability. Another choice would be the adjustment of cup alignment. Combined anteversion is defined the summation of cup anteversion in axial plane and stem anteversion in axial plane. But in realty the impingement occurs with 3 dimensional relationships between neck and cup with very complicated geometries. In that meaning, the definition of the angles could be said ambiguous too. The bowing of the femur also makes the relationships more complicated. Upon those backgrounds, we have been performing 3D preoperative planning for total hip arthroplasty on every case. In the present study, in vivo position of the stem in each case was determined then the anteversion observed on surgical view and anteversion around femoral mechanical axis are compared using 3D CAD software.

Materials and Methods

Ten recent cases from our hip arthroplasty with 3D preoperative planning were reviewed for this purpose. The bone geometries were obtained from CAT scans with very low X-ray dose using Mimics® (Materialize, Belgium). Preoperative planning for Revelation stem® (DJO, USA) was performed using Mimics® (Materialize, Belgium). Femoral mechanical axis was defined as a line between center of femoral head and the middle point of medial and lateral epicondyle of the femur. Then mechanical anteversion is assessed from posterior condylar line. On the other hand, the calf was rotated 90 degrees around epiconlylar axis of each femur, and in vivo stem position was estimated then, stem axis was aligned perpendicular to the view. The anteversion in the surgical view was assessed from that view as the angle toward the calf. (Fig. 1) Using in vivo stem alignment, the impingement angle was also assessed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 53 - 53
1 Sep 2012
Fetto J
Full Access

Recent trends in surgical techniques for THR, i.e. MIS and anterior approaches, have spawned an interest in and possible need for shorter femoral prostheses. Although, early clinical investigations with custom short stems have reported very encouraging results, the transition to off-the-shelf (OTS) versions of shorter length prostheses has not met with the same degree of success. Early reports with OTS devices have documented unacceptably high and significant incidences of implant instability, migration, mechanical/aseptic failure, and technical difficulty in achieving reproducible implantation outcomes. They have highlighted the absolute need for a better understanding of the consequences of changes in implant design as well as for improvements in instrumentation and surgeon training.

Two basic questions must be addressed. First, what is the purpose of a stem? And second, can stem length be reduced and if so by how much can this be safely done. What are the effects of stem shortening and are there other design criteria which must take on greater importance in the absence of a stem to protect against implant failure.

To examine these questions a testing rig was constructed which attempts to simulate the in vivo loading situation of a hip, fig. 1. Fresh cadaveric femora were tested with the femora intact and then with femoral components of varying stem length implanted to examine the distribution of stresses within the femur under increasing loads as a function of stem length.

Our studies indicated that a stem is not an absolute requirement in order to achieve a well functioning, stable implant. However in order to reduce the possibility of mechanical failure a reduced stem or stemless implant absolutely must have three important characteristics to its design. First, it must have sufficient medial/lateral dimension to provide stability against subsidence and varus stress; second it must have a flat posterior surface, parallel and in contact with the posterior endosteal surface of the proximal femur with which to maximize A/P stability against flexion/extension forces (As a consequence of this design feature, appropriate anteversion must be achieved in the neck region of the prosthesis and not by rotation of the implant within the proximal metaphyseal cavity of the femur); and third, the implant must also have a cross-sectional geometry that will stabilize against torsional loading about the long axis of the femur.

Therefore, simply reducing the length of an existing implant to accommodate changes in surgical techniques may not be a reasonable or safe design change. Such shortened versions of existing stem designs must be rigorously tested before being released for general use. The required design parameters outlined above have been clinically validated in custom fabricated implants. They have been shown to reduce aseptic loosening and migration of a short stem femoral implant. This report will provide the clinical review of a multi-center experience with the first 150 off-the-shelf “Lateral Flare” short stem implants.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 64 - 64
1 Jun 2012
Fetto J
Full Access

Non-cemented components have traditionally employed several possible features, among them a stem and/or collar, to achieve proper alignment and initial implant stability within the proximal femoral cavity.

The advent of MIS has stimulated an interest in reducing the dimensions of implants, specifically stem length, in order to facilitate introduction and implantation of the component. The consequence of this trend appears to be an increase in early aseptic failure, of some components, due to loosening and migration. Several important questions have arisen.

What are the direction of the deforming forces about a hip during daily activities?

What design features should a short stem implant exhibit so as to provide optimum stability against these forces?

Is having a stem an absolute requirement of a femoral component?

What is the minimum “safe” length a stem must have?

How can proper short stem alignment be optimized? Is intra-operative x-ray exposure necessary?

This presentation will discuss the computer modeling, laboratory testing and clinical outcomes of various

component designs; and make suggestions concerning directions for future investigations.