Abstract
Background
Total knee arthroplasty (TKA) is the highly developed procedure for sever osteoarthritic knee, in which there are two major concepts; Cruciate Retaining design (CR) and Posterior Stabilized design (PS). The femoral roll back movement is enforced with the post-cam mechanism in the PS, however, this structure associates with the complications, i.e. wear and dislocation. The CR has been developed to obtain the knee stability with native posterior cruciate ligament (PCL) in TKA. However, the preservation of the PCL can limit knee exposure and increase the technical challenge of surgery. We hypothesized that the knee exposure was easily achieved after the PCL was released, however, the PCL was repaired and the posterior stability was re-established after the TKA with time if it was released subperiostealy.
Objective
The objective of this study was to evaluate the varying of the posterior stability after the PCL-released CR TKA.
Methods
Patients were performed the CR TKA with 3DKnee (DJO Global, Vista, CA), in which the entire PCL was subperiostealy released at its femoral insertion (Fig. 1). Following that, the patients were examined with the Knee Society Score and the KT-2000 knee ligament arthrometer (MedMetric Corp., San Diego, CA) firstly between 3 weeks and 7 weeks and secondly between 12 weeks and 20 weeks postoperatively.
Results
There were 8 cases in 2 female and 6 male knees, and the age was 63.3 ± 11.1 (ranging from 51 to 79). Once the PCL was released, the tibia was easy to subluxate, and the knee was clearly exposed intraoperatively. The Knee Society knee score at the first evaluation was 74.4 ± 10.7 (59 to 90), which was significantly improved compared to the preoperative score of 37.0 ± 9.4 (25 to 50) (p<0.001). Then, the score increased up to 89.4 ± 11.6 (70 to 100) at the second evaluation. The function score was 35.6 ± 19.9 (5 to 55) preoperatively and decreased to 24.4 ± 12.2 (20 to 55) at the first evaluation. After that, it increased to 82.5 ± 14.1 (65 to 100) (p<0.001) at the second evaluation. The anteroposterior laxity was 5.2 ± 1.9 (3 to 7.5) mm at the first evaluation, and was improved to 3.6 ± 1.2 (2 to 5) mm (p<0.046). Therefore, the posterior stability was confirmed to be re-established.
We also confirmed the re-establishment of the PCL integrity at a revision TKA, in which the original procedure had been performed 7 years ago (Fig. 2).
Conclusion
The re-establishment of the posterior stability after the PCL-released CR TKA was demonstrated. This procedure to release the entire PCL subperiostealy is recommended as a means of facilitating CR TKA.