It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N.Aim
Materials and Methods
The torsional strength of cemented implants is likely influenced by stem geometry. Five straight stems with different cross-sectional shapes (circular, oval, triangular, round-rectangular, sharp-rectangular) were custom-machined. The stems were cemented into tubes using bone cement, and subjected to torsion (2.5deg/min)(n=7). At initial failure (crack through the cement mantle or loss of cement-stem adhesion), the sharp-rectangular stem resisted over 33% more torque than the other four stems (p=0.13). At ultimate failure (5° stem rotation), the resistance provided by the circular stem was less than 12% of either rectangular stem (p<
0.05). Additional studies are needed to determine the effects of long-term loading. To determine the influence of cross-sectional implant stem shape on cement failure under torsional loading. The sharp-rectangular stem provided the greatest torsional resistance against initial failure. At ultimate failure, the two rectangular stems performed better than the other stems, with the circular stem providing the least torsional resistance. A stem design that provides increased resistance to torsion will, in all likelihood, improve the longevity of cemented stemmed implants. Five straight stems with different cross-sectional shapes (circular, oval, triangular, round-rectangular, sharp-rectangular) were custom-machined. Each stem was cemented in a square aluminum tube using Simplex® cement (Stryker, Michigan, USA). A materials testing machine was used to apply torsion to the stem at 2.5 deg/minute until failure. ‘Initial failure’ was defined as the appearance of a crack through the cement mantle and/or the loss of cement-stem adhesion. ‘Ultimate failure’ was defined as 5° of stem rotation. Results (n=7) were compared using one-way ANOVAs with post-hoc Student-Newman-Keuls tests (p=0.05). The sharp-rectangular stem withstood over 33% more torque at initial failure than the other stems (p=0.13). At ultimate failure, the circular stem provided significantly less torsional resistance than the other four stems (p<
0.05), and was able to resist less than 12% of the torque applied to either rectangular stem. These results suggest shape may play a role in the onset of implant loosening due to torsion. Further studies are required to explore other shapes and to examine the effects of cyclic loading and cement soaking. Funding: Natural Sciences and Engineering Research Council, University of Western Ontario
Passive and active elbow flexion was performed in eight cadaveric arms to determine the effect of Type 1 coronoid fractures and suture repair on kinematics. Testing was performed in ligamentously intact and MCL deficient elbows; with radial head arthroplasty (RHA); with an intact coronoid, following a Type 1 fracture, and with suture repair of the coronoid. There was an alteration in elbow kinematics and stability following Type 1 coronoid fractures that was not corrected with coronoid repair. Suture fixation of the coronoid is probably unnecessary if the lateral ligaments are repaired and the radial head is repaired or replaced. To determine the effect of fixation of Type 1 coronoid fractures on elbow stability and kinematics in ligamentously intact and medial collateral ligament (MCL) deficient elbows with radial head arthroplasty (RHA). Type 1 coronoid fractures cause changes in elbow kinematics and stability that are not corrected with suture repair. Suture fixation of Type 1 coronoid fractures is probably unnecessary if the lateral ligaments are repaired and the radial head is repaired or replaced. With intact ligaments, there was an increase in valgus angulation following a Type 1 coronoid fracture (p<
0.05) that was not corrected with fixation. With MCL deficiency, there was no change in valgus angulation for all coronoid states. For both ligament states, there was an increase maximum varus-valgus laxity after a Type 1 coronoid fracture with forearm pronation (p=0.03) that was not corrected with fixation (p=0.4). Kinematic data was collected from eight cadaveric arms during passive and simulated active elbow motion. The protocol was performed in stable and MCL deficient elbows with RHA. Testing occurred with the coronoid intact, following Type 1 coronoid fracture, and with suture repair of the fracture. Valgus angulation and maximum varus-valgus laxity were measured. With intact ligaments, Type 1 coronoid fractures cause an alteration in elbow kinematics and laxity that is not corrected with suture fixation. With MCL disruption, Type 1 coronoid fractures have no effect on elbow kinematics and a small effect on laxity that is not corrected with coronoid repair. Funding: Research and Institutional Support received from Wright Medical Technologies. Please contact author for graphs and/or diagrams.
The strength of the intact and four reconstruction techniques (figure-eight, docking, single strand utilizing interference screws, and a single strand) of the medial collateral ligament (MCL) of the elbow were compared. Twenty cadaveric specimens were tested with a cyclic valgus loading protocol. The peak loads to failure of the MCL reconstructions were inferior compared to the intact ligament (p<
0.05). The docking and single strand reconstruction utilizing an endobutton for ulnar fixation were equivalent and had greater initial strength than the interference screws or figure-eight technique. It is suggested that improved interference screws are required for this repair. The purpose of this study was to compare the initial strength of the intact medial collateral ligament (MCL) of the elbow and four reconstruction techniques. The docking and endobutton reconstructions showed equivalent peak load to failure. Improved interference screws are required before they are employed clinically. The average peak load to failure or 5mm of joint gapping was 142.5±39.4N for the intact, 53.0±9.5N for the docking, 52.5±10.4N for the endobutton, 41.0±16.0N for the interference screw, and 33.3±7.1N for the figure-eight reconstructions. The peak load to failure was higher for the intact specimens compared to any of the reconstructions (p<
0.001). The docking reconstruction showed higher peak loads than the figure-eight or interference screw reconstruction, and the endobutton reconstruction showed higher peak loads than the figure-eight reconstruction (p<
0.004). There was no difference in peak loads between the docking and endobutton reconstructions (p>
0.05). Twenty (ten pairs) unpreserved cadaveric upper extremities were mounted in a custom jig with the elbow at 90°, and a valgus force was applied 12cm from the elbow joint. The specimens were loaded starting at 20N with the load increased in increments of 10N (200 cycles at each load), until either complete ligament failure or a 5mm increase in the distance between the attachment sites of the MCL. The results support that a single strand or multistrand ligament reconstruction can be equivalent with respect to maximal peak loads and cyclic loading. There are concerns with regard to the use of interference screw fixation in the clinical situation.
The influence of the supinator and pronator quadratus (PQ) muscles on distal radioulnar joint stability were evaluated using a joint simulator capable of producing forearm rotation, before and after ulnar head excision. Multiple pronation trials were conducted with incremental loading of the PQ relative to the pronator teres; supination trials were similarly conducted with the supinator and biceps. Incremental supinator muscle loading did not alter forearm kinematics. Increased PQ loading did not affect intact kinematics, but did alter joint motion following ulnar head excision. PQ activation will likely aggravate forearm instability following ulnar head excision; suggesting rehabilitation should incorporate immobilization in supination. The purpose of this study was to study the effect of pronator quadratus (PQ) and supinator loads on forearm kinematics in both an intact distal radioulnar joint (DRUJ) and following ulnar head excision. The PQ muscle appears to aggravate instability of the DRUJ following ulnar head excision, while incremental loading of the supinator muscle had no effect. Patients with DRUJ instability and/or who have undergone surgical removal of the ulnar head should be rehabilitated in supination to limit the influence of the PQ muscle. Eight cadaveric upper extremities were tested in a custom joint simulator employing motion and load-controlled tendon loading to produce forearm rotation. Pronation was achieved via loading of the pronator teres and PQ muscles. Repeated trials were conducted in which the ratio of the PQ load was increased incrementally relative to the pronator teres load. Supination trials were similarly conducted using the biceps and supinator muscles. Testing was conducted in the intact forearm and following ulnar head excision. An electromagnetic tracking device was used to record motion of the radius and ulna. Kinematic data was analyzed with a planar analysis that measured dorsal palmar displacements and diastasis of the DRUJ. Greater diastasis and dorsal translation of the radius relative to the ulna were noted under increased PQ loading following ulnar head excision (p<
0.05). Increased supinator load had no effect on kinematics before or after ulnar head excision. This effect is likely due to the location of the two muscles. The effect of PQ muscle loading was only noted in neutral to full pronation. These results suggest that rehabilitation of the forearm following ulnar head excision should be conducted with the forearm in supination to minimize joint instability.
Three 3mm transverse slices were sectioned from the distal cancellous region of seven fresh-frozen cadaveric humerii. Each slice was marked with a 3x3mm grid, and subjected to compressive testing using a flat cylindrical indenter (1.6mm diameter). Indentation modulus and strength were calculated for each site, and pooled into nine anatomically-defined regions. The most distal slice had higher moduli values (p<
0.05), and the posterior capitellar region had lower moduli values (p<
0.05). There were no slice or regional differences in strength. This suggests that surgical procedures requiring cancellous fixation utilize the most distal aspect of the humerus while avoiding the posterior capitellum. To quantify the indentation strength and modulus of distal humeral cancellous bone, and identify any regional variations. Cancellous bone modulus in the distal humerus decreases from distal to proximal. The posterior capitellum has a lower modulus than the other regions of the distal humerus. The influence of slice depth emphasizes the importance of minimizing the amount of bone removed during prosthetic replacement. Regional variations in modulus suggest that the posterior capitellum should be avoided during fixation of implants or placement of screws. Three 3mm transverse cancellous bone slices obtained from the distal end of each of seven fresh-frozen cadaveric specimens were subjected to compressive testing using a materials testing machine with a 1.6mm flat cylindrical indenter. Testing was performed in a 3x3mm grid. The indentation modulus and local strength were calculated for each test site, and then averaged into nine regions defined by the capitellum, medial and lateral trochlea, and anterior, central and posterior sections for each slice. Mean modulus was found to be 309.8±242.0 MPa (range: 2.9–1041.7 MPa). Yield strength averaged 4.4±2.5 MPa (range: 0.6–16.3 MPa). The highest modulus was found in the distal-most slice (p<
0.05). The lowest modulus region was the posterior capitellum (p<
0.05). There were no differences in strength between slices or across the nine regions. A comparison with proximal tibial cancellous bone properties suggests the distal humerus may carry loads approaching 30% of those at the knee, assuming that bone adapts to stress magnitudes. Funding: Natural Sciences and Engineering Research Council; University of Western Ontario