Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR), MMP secretion (ELISA), migration rate (scratch wound healing assay) or contractility (collagen gels). Analysis revealed that elevated CD4+ T-cell levels and reduced CD8+ T-cell levels (increased CD4/CD8 ratio) in hematoma aspirate and pre-operative blood were associated with inferior clinical outcomes regarding pain and function at 26 and 52 weeks. Increased levels of CD8+ -memory T-cell subpopulations in blood 6 weeks after surgery were associated with less tendon elongation. In vitro, tenocytes showed increased MMP1/2/3 levels and collagen III/I ratio in co-culture with unpolarized and/or IL17-polarized CD4+ T-cells compared to unpolarized CD8+ T-cells. This coincided with increased IL17 receptor expression in tenocytes co-cultured with CD4+ T-cells. Exposure of tenocytes to IL17-polarized CD4+ T-cells decreased their migration rate and increased their matrix contractility, especially compared to IFNy-polarized CD8+ T-cells. The CD4+ /CD8+ T-cell ratio could serve as prognostic marker for early identification of patients with impaired AT healing potential. Local reduction of CD4+ T-cell levels or their IL17 secretion represent a potential therapeutic approach to improve AT healing and to prevent weakening of the tendon ECM.
The ability of the body to constantly maintain metabolism homeostasis while fulling the heightened energy and macromolecule demand is crucial to ensure successful tissue healing outcomes. Studies investigating the local metabolic environment during healing are scarce to date. Here, using Type 2 Diabetes (T2D) as a study model, we investigate the impact of metabolism dysregulation on scaffold-guided large-volume bone regeneration. Our study treated wild-type or T2D rats with 5 mm critical-sized femoral defects with 3D-printed polycaprolactone (PCL) scaffolds with 70% porosity. Metabolomics was leveraged for a holistic view of metabolism alteration as healing progress and correlated to regenerated bone tissue volume and quality assessed using micro-computed tomography (µ-CT), histology, and immunohistology. Semi-targeted metabolomics analysis indicated dysregulation in the glycolysis and TCA cycle – the main energy production pathways, in T2D compared to healthy animals. The abundance of metabolites substrates, i.e., amino acids – for protein/ extracellular matrix synthesis was also affected in T2D. Tissue-level metabolites observations aligned with morphological observation with less newly formed bone observed in T2D than wild-type rats. This study enlightens the metabolism landscape during scaffold-guided large-volume bone regeneration in wild-type vs. T2D to further guide the personalization of the scaffold to drive successful regeneration.
Friction between head and cup is a primary factor for survival of total hip joint replacement (THR) and its gliding surfaces. In up to 40% of all revisions, the cup or inlay must be replaced as result of friction-induced wear [1]. Aim of the study was to measure the friction-induced temperature increase in vivo in THR and to identify possible individual parameters of influence. For the in vivo measurement, an instrumented implant with an Al2O3/XPE-pairing and an integrated temperature sensor was used [Fig. 1] [2]. Ten patients were provided with such an instrumented implant. Up to now, long time measurements were performed on six of these patients (Ø63y, Ø89kg). During these measurements, the subjects walked Ø60min on a treadmill with 4km/h. The investigation was performed Ø61 (43–70) months post operatively. Short time (Ø3min) in vivo load measurements during walking on treadmill were already available from the other four patients. These data were used to calculate the peak temperatures after 60mins of walking by using a model, based on the long time measurements.Introduction
Methods
Industrialized countries experience a population aging. Elderly patients, due to the experienced immunity, have a constant pro-inflammatory milieu. Little is known on how adaptive immunity impacts the tissue homeostasis and regeneration. The standardized housing of lab animals is specific pathogen free (SPF). However, this housing condition hinders antigen exposure and thus an aging of the adaptive immune system. We hypothesized that exposure to antigens and a developing adaptive immunity will impact tissue homeostasis and regeneration in mice. Mice kept under SPF housing or non-SPF were examined towards their immune status via flow cytometry, bone structure via microCT and bone competence via biomechanical torsional testing. MSCs from these mice were analyzed regarding their differentiation potential and ECM production under various immune cell signaling. Bone regeneration was analyzed
Recently, we could illustrate how tightly the bone and the immune system are interconnected during normal homeostasis but even stronger during bone regeneration. Specifically, the patient´s individual ratio of CD8+ effector T cells (TEFF, already identified as potential unfavorable cells for successful healing) to CD4+ regulatory T cells (TREG, one counterpart to CD8+ TEFF in controlling intratissue inflammation) prior to injury/ surgery appears to determine the healing outcome after fracture. We hypothesized that concentrating CD4+ TREG could serve as innovative therapeutic strategy to improve bone healing. We used an adoptive CD4+ TREG transfer in our well-established mouse osteotomy model. Before treatment, we identified the pre-surgery ratio of CD8+ TEFF/ CD4+ TREG by flow cytometry to characterize the healing potential of individual animals. Thereafter, we performed an adoptive CD4+ TREG transfer to reshape inflammation for supporting osteotomy healing. Across all groups, healing outcome was analyzed after 21 days post-surgery by µCT. Whereas TREG were highly supportive in SPF mice, we observed a heterogeneous clustered healing outcome in the non-SPF mice: TREG responder (improved healing outcome; p = 0.038) and TREG non-responder (impaired healing outcome; p = 0.024). Interestingly, the pre-/peri-surgery ratio of CD8+ TEFF/ CD4+ TREG was higher in the TREG non-responder (p=0.057). Thus, the amount of adoptively transferred CD4+ TREG was not sufficient to improve the healing outcome due to initial unfavorable high CD8+ TEFF/CD4+ TREG ratio. These results clearly show the importance of determining the individual immune status of each patient in the clinic before applying an immunotherapeutic approach.
The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.Objectives
Methods
Tibiofemoral alignment is important to determine the rate of
progression of osteoarthritis and implant survival after total knee
arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral
alignment following TKA, but this has been questioned in recent
years. The aim of this study was to evaluate whether varus or valgus
alignment indeed leads to increased medial or lateral tibiofemoral
forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine
patients with instrumented knee implants. Medial force ratios were
analysed during nine daily activities, including activities with
single-limb support (e.g. walking) and double-limb support (e.g.
knee bend). Hip-knee-ankle angles in the frontal plane were analysed
using full-leg coronal radiographs. Aims
Patients and Methods
The uncertainty of the biological effects of wear and corrosion from Metal-on-metal (MoM) implants has initiated a debate on their safety and use. Generally, the release of wear particles from MoM hip implants can clinically manifest in aseptic osteolysis. In our study, the effect of MoM-wear particles and particle originated Co and Cr ions on mesenchymal stromal cells (MSCs) was investigated [1]. The lead hypotheses were that (1) dissociated Co and Cr, originated from MoM-wear particles, accumulate in the bone marrow and (2) apparently impair the osteogenic function of local MSCs. This impairment could be one element contributing to the manifestation of periprosthetic osteolyses. The study was approved by the local ethical committee (EA1/194/13); all donors gave written informed consent. Blood (B), Synovial fluid (SF) periprosthetic tissue (PT) and bone marrow (BM) were collected from patients with at least one osteolytic lesion, undergoing a revision of a MoM hip implant. Patients undergoing primary THA served as controls. Metal wear particles were isolated from PT by enzymatic digestion and their size and shape characterized by transmission electron microscopy (TEM). Local and systemic levels of Co and Cr were analyzed by graphite furnace atomic absorption spectroscopy. MoM-MSCs and control-MSCs were isolated from BM for INTRODUCTION
METHODS
The accurate reconstruction of hip anatomy and
biomechanics is thought to be important in achieveing good clinical
outcomes following total hip arthroplasty (THA). To this end some
newer hip designs have introduced further modularity into the design
of the femoral component such that neckshaft angle and anteversion,
which can be adjusted intra-operatively. The clinical effect of
this increased modularity is unknown. We have investigated the changes
in these anatomical parameters following conventional THA with a
prosthesis of predetermined neck–shaft angle and assessed the effect
of changes in the hip anatomy on clinical outcomes. In total, 44 patients (mean age 65.3 years (standard deviation
( The mean pre-operative neck–shaft angle was significantly increased
by 2.8° from 128° ( Cite this article:
Skeletal muscle injuries often lead to severe functional deficits. Mesenchymal stem cell (MSC) therapy is a promising but still experimental tool in the regeneration of muscle function after severe trauma. One of the most important questions, which has to be answered prior to a possible future clinical application is the ideal time of transplantation. Due to the initial inflammatory environment we hypothesized that a local injection of the cells immediately after injury would result in an inferior functional outcome compared to a delayed transplantation. Twenty-seven female Sprague Dawley rats were used for this study. Bone marrow was aspirated from both tibiae of each animal and autologous MSC cultures obtained from the material. The animals were separated into three groups (each n=9) and the left soleus muscles were bluntly crushed in a standardized manner. In group 1 2×106 MSCs were transplanted into the injured muscle immediately after trauma, whereas group 2 and 3 received an injection of saline. Another week later the left soleus muscles of the animals of group 2 were transplanted with the same number of MSCs. Group 1 and 3 received a sham treatment with the application of saline solution in an identical manner. In vivo functional muscle testing was performed four weeks after trauma to quantify muscle regeneration. Maximum contraction forces after twitch stimulation decreased to 39 ± 18 % of the non injured right control side after crush trauma of the soleus muscles as measured in group 3. Tetanic stimulation showed a reduction of the maximum contraction capacity of 72 ± 12 % of the value obtained from intact internal control muscles. The transplantation of 2 x 106 MSCs one week after trauma improved the functional regeneration of the injured muscles as displayed by significantly higher contraction forces in group 2 (twitch: p = 0.014, tetany: p = 0.018). Local transplantation of the same number of MSCs immediately after crush injury was able to enhance the regeneration process to a similar extent with an increase of maximum twitch contraction forces by 73.3 % (p = 0.006) and of maximum tetanic contraction forces by 49.6 % (p = 0.037) compared to the control group. The presented results underline the effectivity of MSC transplantation in the treatment of severe skeletal muscle injuries. The most surprising finding was that despite of the fundamental differences of the local environment into which MSCs had been transplanted, similar results could be obtained in respect to functional skeletal muscle regeneration. We assume that the effect of the MSC after immediate injection can partly be explained by their known immunomodulatory competences. The data of our study provide evidence for a large time window of MSC transplantation after muscle trauma.
The aim of this study was to examine the therapeutic potential of locally transplanted MSCs or osteoprogenitor cells (OPCs) in delayed unions. Autologous MSCs were cultured in DMEM or osteogenic medium. A femoral osteotomy was created in rats and stabilized with an external fixator. Except for the Control-group (C-group), a delayed union was induced by cauterization of the periosteum and bone marrow removal. After 2 days, these animals received an injection of DMEM in the gap containing MSCs (MSC-group), OPCs (OPC-group) or no cells (Sham-group). Histomorphometrical analysis showed significant differences in the fraction of mineralized bone, cartilage and connective tissue between the C- and the Sham-group after 2 (p=0.001) and 8 weeks (p≤0.009). After 2 weeks, the MSC- and OPC-groups developed a larger cartilage fraction (each p=0.019) compared to the Sham-group. Biomechanical testing after 8 weeks demonstrated a significantly lower torsional stiffness (p=0.001) in the Sham-group compared to the C-group. Both the MSC and OPC groups showed a higher torsional stiffness than the Sham-group with statistically significant differences (p<
0.002) in the OPC-group. Locally applied MSCs and OPCs slightly improved the healing in this model. The MSCs were less effective compared to the OPCs. The less than expected healing improvement of both cell treatments may be related to an unfavourable microenvironment at the application time. An explanation for the superior outcome of the OPCs might be that the OPCs may be protected by macroscopically visible matrix at the transplantation time point.
The aim of this study was to establish an atrophic non-union model in the rat femur under well defined biomechanical conditions and with minimised interactions between the processes in the healing zone and the implant by using external fixation.
The development of iron oxide nanoparticles, which are taken up and endosomally stored by stem cells, allows the evaluation of cellular behaviour in the muscle with the use of magnetic resonance imaging (MRI). Previous work has shown that labelling does not affect the proliferation and neurogenic differentiation capacity of embryonic stem cells. In the present study we are currently investigating the in vivo distribution and migration of locally transplanted MSC after blunt muscle trauma in a rat model.
The hypothesis of the current study was that the loading of the proximal femur is altered significantly by the surgical approach. The change in long-term periprosthetic bone mineral density in relation to the alteration of the musculature after the anterolateral (Group A) and transgluteal approaches (Group B) has been compared. Group A comprised 35 hip joints (30 patients) and Group B 47 hip joints (37 patients). No significant differences were seen between groups in respect to age, gender, or diaphyseal BMD distribution and in respect to average stem size in a Wilcoxon test. Measurement of BMD in femoral Gruen Zones I, II, VI, and VII revealed a significant bone loss in Group B compared with Group A; however the functional outcome showed no significant differences between the two groups postoperatively. Analysis of proximal femoral loading by means of a validated musculoskeletal model showed a considerable redistribution of the musculoskeletal loading across the hip during walking and stair climbing after a transgluteal compared with an anterolateral surgical approach. The muscular damage caused by the surgical approach seems to have a significant influence on the long-term bone loss and the initial postoperative loading of the proximal femur.