Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 5 - 5
1 May 2016
Roche C Stroud N Palomino P Flurin P Wright T Zuckerman J DiPaola M
Full Access

Introduction

Achieving prosthesis fixation in patients with glenoid defects can be challenging, particularly when the bony defects are large. To that end, this study quantifies the impact of 2 different sizes of large anterior glenoid defects on reverse shoulder glenoid fixation in a composite scapula model using the recently approved ASTM F 2028–14 reverse shoulder glenoid loosening test method.

Methods

This rTSA glenoid loosening test was conducted according to ASTM F 2028–14; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in composite/dual density scapulae (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. Anterior defects of 8.5mm (31% of glenoid width and 21% of glenoid height; n=7) and 12.5mm (46% of glenoid width and 30% of glenoid height; n=7) were milled into the composite scapula along the S/I glenoid axis with the aid of a custom jig. The baseplate fixation in scapula with anterior glenoid defects was compared to that of scapula without an anterior glenoid defect (n = 7). For the non-defect scapula, initial fixation of the glenoid baseplates were achieved using 4, 4.5×30mm diameter poly-axial locking compression screws. To simulate a worst case condition in each anterior defect scapulae, no 4.5×30mm compression screw were used anteriorly, instead fixation was achieved with only 3 screws (one superior, one inferior, and one posterior). A one-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements relative to each scapula (anterior defect vs no-anterior defect).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 504 - 504
1 Dec 2013
Roche C Stroud N DiPaola M Flurin PH Zuckerman J Wright T
Full Access

Introduction

Initial fixation of noncemented implants is critical to achieve a stable bone/implant interface during the first few months after surgery to potentiate bone in-growth and avoid aseptic loosening. Numerous reverse shoulder glenoid implant designs have been conceived in an attempt to improve implant performance and decrease the rate of aseptic glenoid loosening, commonly reported to be 5%. Design variations include: baseplate profile, baseplate size, backside geometry, center of rotation, surface finish and coatings, fixation screw diameters, number of fixation screw options, and type of screw fixation. However, little comparative biomechanical data exist to substantiate one design consideration over another. To that end, this study quantified glenoid fixation before and after cyclic loading of simulated abduction of 6 different reverse shoulder glenoid designs when secured to a low density polyurethane bone substitute block.

Methods

A displacement test quantified fixation of 6 different reverse shoulder designs: 38 mm Equinoxe standard offset (EQ), 38 mm Equinoxe lateral offset (EQL), 36 mm Depuy Delta III (DRS), 36 mm Zimmer, (ZRS), 32 mm neutral DJO RSP (DJO), and a 36 mm Tornier BIO-RSA (BIO), secured to a 0.24 g/cm3 polyurethane block as a shear (357 N) and compressive (50 N) load was applied before and after cyclic loading. (Figure 1) Glenoid displacement was measured relative to the block using dial indicators in the directions of the applied loads along the superior/inferior axis. A cyclic test rotated each glenosphere (n = 7 for each design) about a 55° arc of abduction at 0.5 Hz for 10k cycles as 750N was constantly applied. (Figure 2) Each implant was cycled using a 145° humeral liner of the appropriate diameter to ensure each device is subjected to the same shear load. A two-tailed unpaired student's t-test was used to compare pre- and post-cyclic mean displacements between designs; p < 0.05 denotes significance.