header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Knee

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 29 - 29
1 Oct 2020
Farooq H Deckard ER Carlson J Ghattas N Meneghini RM
Full Access

Background

Advanced technologies, like robotics, provide enhanced precision for implanting total knee arthroplasty (TKA) components; however, optimal component position and limb alignment remain unknown. This study purpose was to identify the ideal target sagittal component position and coronal limb alignment that produce optimal clinical outcomes.

Methods

A retrospective review of 1,091 consecutive TKAs was performed. All TKAs were PCL retaining or sacrificing with anterior lipped (49.4%) or conforming bearings (50.6%) performed with modern perioperative protocols. Posterior tibial slope, femoral flexion, and tibiofemoral limb alignment were measured with a standardized protocols. Patients were grouped by the ‘how often does your knee feel normal?’ outcome score at latest follow-up. Machine learning algorithms were used to identify optimal alignment zones which predicted improved outcomes scores.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 61 - 61
1 Oct 2019
Warth LC Deckard ER Meneghini RM
Full Access

Introduction

t is accepted dogma in total knee arthroplasty (TKA) that resecting the posterior cruciate ligament (PCL) increases the flexion space by approximately 4mm, which significantly affects intra-operative decisions and surgical techniques. Unfortunately, this doctrine is based on historical cadaveric studies of limited size. This study purpose was to more accurately determine the effect of PCL resection on the tibiofemoral flexion gap dimension in vivo in a large sample.

Methods

Tibiofemoral joint space measurements were made during 127 standardized TKAs by two arthroplasty surgeons. A medial parapatellar approach, computer navigation and provisional tibial and femoral bone cuts were performed in all cases with particular attention to preserving PCL integrity. Cases with an incompetent or damaged PCL were excluded. The tibiofemoral gap dimension was measured with a calibrated tension device at full extension, 45-degrees, and 90-degrees before and after complete PCL resection.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 4 - 4
1 Oct 2018
Bush AN Ziemba-Davis M Deckard ER Meneghini RM
Full Access

Introduction

Existing studies report more accurate implant placement with robotic-assisted unicompartmental knee arthroplasty (UKA); however, surgeon experience has not always been accounted for. The purpose of this study was to compare the accuracy of an experienced, high-volume surgeon to published data on robotic-assisted UKA tibial component alignment.

Methods

One hundred thirty-one consecutive manual UKAs performed by a single surgeon using a cemented, fixed bearing implant were radiographically reviewed by an independent reviewer to avoid surgeon bias. Native and tibial implant slope and coronal alignment were measured on pre- and postoperative lateral and anteroposterior radiographs, respectively. Manual targets were set within 2° of native tibial slope and 0 to 2° varus tibial component alignment. Deviations from target were calculated as root mean square (RMS) errors and were compared to robotic-assisted UKA data.