header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 31 - 31
1 Mar 2021
Hopwood J Redmond A Chapman G Richards L Collins S Brockett C
Full Access

Abstract

Objectives

Implant loosening remains a common cause of total ankle replacement (TAR) revision, and has been associated with wear-mediated osteolysis. Limited pre-clinical studies for TARs have been reported and the variety of experiment settings make it difficult to compare wear rates. Factors such as simulator control mechanism; whether pneumatic or electromechanical, may influence the integrity of the simulator outputs with respect to input profiles. This study compares the wear of a TAR, tested in electromechanical and pneumatic experimental simulators under identical input conditions.

Methods

Twelve medium BOX® (MatOrtho Ltd) TARs (n=6 for each simulator) were tested in an electromechanical and pneumatic knee simulator (Simulation Solutions, UK) for 3 million cycles (Mc). Standard ‘Leeds’ displacement-controlled inputs were used. Kinematic performance was investigated by comparing the output profiles against the maximum demanded input values. The lubricant used was 25% new-born calf serum and wear was determined gravimetrically.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 48 - 48
1 Jul 2014
Lowry C Vincent G Traynor A Collins S
Full Access

Summary Statement

Corin has developed bone conserving prosthesis (MiniHip™) to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices.

Introduction

Leg length and offset discrepancy resulting from Total Hip Replacement (THR) is a major cause of concern for the orthopaedic community. The inability to substitute the proximal portion of the native femur with a device that suitably mimics the pre-operative offset and head height can lead to loss of abductor power, instability, lower back pain and the need for orthodoses. Contemporary devices are manufactured based on predicate studies to cater for the variations within the patient demographic. Stem variants, modular necks and heads are often provided to meet this requirement. The number of components and instruments that manufacturers are prepared to supply however is limited by cost and an unwillingness to introduce unnecessary complexity. This can restrict the ability to achieve the pre-osteoarthritic head centre for all patient morphologies. Corin has developed MiniHip™ to better replicate the physiological load distribution in the femur. This study assessed whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 81 - 81
1 Jul 2014
Kinbrum A Traynor A Collins S
Full Access

Summary

This work uses a mathematical method to correlate the forces calculated to push-on and pull off a femoral head from a stem and correlate the results of in vitro testing.

Introduction

This work aimed to mathematically model the force needed to disassemble the THR unit for a given assembly load. This work then compared these results with the results of an in vitro experiment. The research presented aimed to determine the assembly forces necessary to prevent movement of the head on the stem through friction. By assessing the forces necessary to push the head onto the stem securely enough to prevent any movement of the head through friction, it is likely that the fretting and corrosion of the head taper interface will be reduced.