Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 4 - 4
2 Jan 2024
Han S Yoo Y Choi H Lee K Korhonen R Esrafilian A
Full Access

It is known that the gait dynamics of elderly substantially differs from that of young people. However, it has not been well studied how this age-related gait dynamics affects the knee biomechanics, e.g., cartilage mechanical response. In this study, we investigated how aging affects knee biomechanics in a female population using subject-specific computational models.

Two female subjects (ages of 23 and 69) with no musculoskeletal disorders were recruited. Korea National Institute for Bioethics Policy Review Board approved the study. Participants walked at a self-selected speed (SWS), 110% of SWS, and 120% of SWS on 10 m flat ground. Three-dimensional marker trajectories and ground reaction forces (Motion Analysis, USA), and lower limbs’ muscle activities were measured (EMG, Noraxon USA). Knee cartilage and menisci geometries were obtained from subjects’ magnetic resonance images (3T, GE Health Care). An EMG-assisted musculoskeletal finite element modeling workflow was used to estimate knee cartilage tissue mechanics in walking trials. Knee cartilage and menisci were modeled using a transversely isotropic poroviscoelastic material model.

Walking speed in SWS, 110%, and 120% of SWS were 1.38 m/s, 1.51 m/s, and 1.65 m/s for the young, and 1.21 m/s, 1.34 m/s and 1.46 m/s for the elderly, respectively. The maximum tensile stress in the elderly tibial cartilage was ~25%, ~33%, and ~32% lower than the young at SWS, 110%, and 120% of SWS, respectively. These preliminary results suggest that the cartilage in the elderly may not have enough stimulation even at 20% increases in walking speed, which may be one reason for tissue degeneration. To enhance these findings, further study with more subjects and different genders will investigate how age-related gait dynamics affects knee biomechanics.

Acknowledgments: Australian NHMRC Ideas Grant (APP2001734), KITECH (JE220006)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 38 - 38
17 Apr 2023
Saiz A Hideshima K Haffner M Rice M Goupil J VanderVoort W Delman C Hallare J Choi J Shieh A Eastman J Wise B Lee M
Full Access

Determine the prevalence, etiologies, and risk factors of unplanned return to the OR (UROR) in adult orthopaedic trauma patients.

Retrospective review of a trauma prospective registry from 2014 – 2019 at a Level 1 academic hospital. An UROR was defined as a patient returning to OR unexpectedly following a planned definitive surgery to either readdress the presenting diagnosis or address a complication arising from the index procedure. Univariate and multivariate logistic regression was performed comparing those patients with an UROR versus those without.

A total of 1568 patients were reviewed. The rate of UROR was 9.8% (153 patients). Symptomatic implant was the leading cause of UROR (60%). Other significant UROR causes were infection (15%) and implant failure (9%). The median time between index procedure and UROR was 301 days.

For the univariate and multivariate analysis, open fracture (p< 0.05), fracture complexity (p<0.01), and weekend procedure (p< 0.01) were all associated with increased risk of UROR. All other variables were not statistically significant for any associations.

Those patients with an UROR for reasons other than symptomatic implants were more likely to have polyorthopaedic injuries (p < 0.05), ISS > 15 (p < 0.05), osteoporosis (p < 0.01), ICU status (p < 0.05), psychiatric history (p < 0.05), compartment syndrome (p < 0.05), neurovascular injury (p < 0.01), open fracture (p < 0.05), and fracture complexity (p < 0.05).

The rate of UROR in the orthopaedic trauma patient population is 10%. Most of these cases are due to implant-related issues. UROR for reasons other than symptomatic implants tend to be polytraumatized patients with higher-energy injuries, multiple complex fractures, and associated soft tissue injuries. Future focus on improved implant development and treatments for polytraumatized patients with complex fractures is warranted to decrease a relatively high UROR rate in orthopaedic trauma.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 126 - 126
11 Apr 2023
Kim Y Choi Y Cho S
Full Access

Chronic lateral ankle instability (CLAI) is treated operatively, whereas acute ligament injury is usually treated nonoperatively. Such treatments have been widely validated. Apoptosis is known to cause ligament degeneration; however, few reports have focused on the possible role of apoptosis in degeneration of ruptured lateral ankle ligaments. The aim of our study is to elucidate the apoptosis that occurs within anterior talofibular ligament (ATFL) to further validate current CLAI treatments by adducing molecular and cellular evidence.

Between March 2019 and February 2021, 50 patients were prospectively enrolled in this study. Ruptured ATFL tissues were collected from 21 CLAI patients (group C) and 17 acute ankle fracture patients (group A). Apoptotic cells were counted using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Western blotting for caspases 3, 7, 8, and 9 and cytochrome c, was performed to explore intrinsic and extrinsic apoptotic pathways. Immunohistochemistry was used to detect caspases 3, 7, 8, and 9 and cytochrome c, in ligament vessel endothelial cells.

More apoptotic cells were observed in group C than group A in TUNEL assay. Western blotting revealed that the apoptotic activities of group C ligaments were significantly higher than those of group A (all p < 0.001). Immunohistochemistry revealed increased expression of caspases 3, 7, 8, and 9, and cytochrome c, in group C compared to group A.

The ATFL apoptotic activities of CLAI patients were significantly higher than those of acute ankle fracture patients, as revealed biochemically and histologically. Our data further validate current CLAI treatments from a molecular and cellular perspective. Efforts should be made to reverse or prevent ATFL apoptosis in CLAI patients.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 5 - 5
1 Nov 2018
Huegel J Boorman-Padgett J Nuss C Minnig M Tucker J Cirone J Morris T Choi D Kuntz A Waldorff E Zhang N Ryaby J Soslowsky L
Full Access

PEMF is currently approved by the FDA for adjunctive treatment of lumbar/cervical spine fusion and for treatment of long-bone non-unions. Soft tissues are a potential new therapeutic application for PEMF due to pre-clinical studies showing a reduction of inflammatory markers following PEMF exposure. The aim was therefore to investigate the structural/functional effects of PEMFs on tendon-to-bone and tendon-to-tendon healing in a rotator-cuff (RC) and Achilles tendon (AT) repair model, respectively. RC study: Adult male rats (n=280), underwent bi-lateral supraspinatus tendon transections with immediate repair followed by cage activity until sacrifice (4, 8, and 16 weeks). Non-controls received PEMF for 1, 3, or 6 hours daily. AT study: Male rats underwent acute, complete transection and repair of the Achilles tendon (FULL, n=144) or full thickness, partial width injury (PART, n=160) followed by immobilization for 1 week. Sacrifice was at 1, 3, and 6 weeks. Outcome measures included passive joint mechanics, gait analysis, biomechanical assessments, histological analysis of the repair site and mCT (humerus) assessment (FULL only). RC study: Significant increases in modulus, stiffness, bone mineral content and improved collagen organization was observed for the PEMF groups. No differences in joint mechanics and ambulation were observed. AT study: A decrease in stiffness and limb-loading rate was observed for the PEMF groups for the FULL groups, whereas an increase in stiffness with no change in range-of-motion was seen for the PART groups. The combined studies show that PEMF can be effective for soft tissue repair but is dependent on the location of application.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.


Introduction

Alumina ceramic-on-highly cross-linked polyethylene bearings (Al-on-X-linked PE) are attractive because of the potential for reduced wear, osteolysis and loosening of the component. The purpose of this study was to evaluate the clinical and radiographic outcomes of cementless total hip arthroplasties (THAs) using an Al-on-X-linked PE bearing and to determine the rates of osteolysis using radiographs and computer tomographic (CT) scans in young patients with osteonecrosis of femoral head.

Methods

Consecutive primary cementless THAs using Al-on-X-linked PE bearing were performed in 71 patients (73 hips) who were younger than 50 years of age with osteonecrosis of the femoral head. There were 48 men (51 hips) and 23 women (23 hips). The average age at the time of the index arthroplasty was 46 years (range, 20 to 50 years). Osteolysis was evaluated using radiographs and CT scanning. The average follow-up was 11 years (range, 10 to 13 years).