Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in knee and hip prostheses after total joint replacement is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear of UHMWPE. A number of studies have investigated the factors influencing the wear of UHMWPE acetabular cup liner in hip prosthesis. Most of these studies, however, have focused on the main articulating surfaces between the femoral head and the polyethylene liner. In a previous study (Cho Introduction
Materials and Methods
Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in the human body after total joint replacement causes serious clinical and biomechanical reactions. Therefore, the wear phenomenon of UHMWPE is now recognized as one of the major factors restricting the longevity of artificial joints. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. In a previous study (Cho Introduction
Materials and Methods
Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE and the polyethylene wear debris generated in the human body after total joint replacement cause serious clinical and biomechanical reactions. Therefore, the wear phenomenon of UHMWPE in total joint replacement is now recognized as one of the major factors restricting the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. The wear and/or failure characteristics of 33 retrieved UHMWPE acetabular cup liners of hip prostheses were examined in this study. The retrieved liners had an average Introduction
Materials and Methods
Wear phenomenon of ultra-high molecular weight polyethylene (UHMWPE) in hip and knee prostheses is one of the major restriction factors on the longevity of these implants. In retrieved hip prostheses with screw holes in the metal acetabular cup for fixation to the pelvis, the generation of cold flow into the screw holes is frequently observed on the backside of the UHMWPE acetabular cup liner. In most retrieved cases, the protruded areas of cold flow on the backside were located on the reverse side of the severely worn and deformed surface of the polyethylene liner. It would appear that the cold flow into screw holes contributes to increase of wear and damages of the polyethylene liner in hip prosthesis. In a previous study (Cho Introduction
Methods
Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight-bearing surfaces in total joint arthroplasty. However, the wear phenomenon of UHMWPE components in knee and hip prostheses after total joint arthroplasty is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. In the microscopic surface observation of the virgin knee prosthesis with anatomical design, various grades of microscopic surface scratches and defects caused by machining and surface finishing processes during manufacture of the component were observed on the surface of the metallic femoral component [Fig. 1] (C. Cho et al, 2009), although the overall surface were finished at smoother level. It is thought that certain levels of the microscopic surface asperities caused by these surface damages in the metallic femoral component might contribute to increasing and/or accelerating wear of the UHMWPE tibial insert. Therefore, it is necessary to clarify quantitatively the influence of the microscopic surface asperities of the metallic components in virgin artificial joints on the wear of UHMWPE components. The primary purpose of this study was to investigate the influence of the microscopic surface asperities of the virgin metallic femoral component on the wear of the UHMWPE tibial insert in the virgin knee prosthesis. In this study, the authors focused on the three-dimensional shape of the microscopic surface asperities as a factor influencing the wear mechanism of the UHMWPE tibial insert. The 3D microscopic surface profile measurement of the virgin metallic femoral component using a laser microscope and reproduction of the femoral component surface using 3D CAD software were performed [Fig. 2] in order to produce idealized 3D finite element models of the microscopic surface asperity of the femoral component based on actual measurement data. Elasto-plastic finite element contact analyses between idealized microscopic surface asperities and UHMWPE were also performed in order to investigate the influence of the three-dimensional shape of the microscopic surface asperities of the virgin metallic femoral component on the wear of the UHMWPE tibial insert. The analytical findings of this study suggest that the aspect ratio and shape ratio [Fig. 3] of the microscopic surface asperity of the virgin metallic femoral component have an important influence on increasing and/or accelerating wear of the UHMWPE tibial insert.