While patients with psychological distress have poorer short-term outcomes after total knee arthroplasty (TKA), their longer-term function is unknown. We aimed to 1) assess the influence of preoperative mental health status on long-term functional outcomes, quality of life, and patient satisfaction; and 2) analyze the change in mental health after TKA, in a cohort of patients with no history of mental health disorder, with a minimum of ten years’ follow-up. Prospectively collected data of 122 patients undergoing primary unilateral TKA in 2006 were reviewed. Patients were assessed pre- and postoperatively at two and ten years using the Knee Society Knee Score (KSKS) and Function Score (KSFS); Oxford Knee Score (OKS); and the Mental (MCS) and Physical Component Summary (PCS) which were derived from the 36-Item Short-Form Health Survey questionnaire (SF-36). Patients were stratified into those with psychological distress (MCS < 50, n = 51) and those without (MCS ≥ 50, n = 71). Multiple regression was used to control for age, sex, BMI, Charlson Comorbidity Index (CCI), and baseline scores. The rate of expectation fulfilment and satisfaction was compared between patients with low and high MCS.Aims
Methods
The aim of this study was to assess the influence of obesity on the clinical outcomes and survivorship ten years postoperatively in patients who underwent a fixed-bearing unicompartmental knee arthroplasty (UKA). We prospectively followed 184 patients who underwent UKA between 2003 and 2007 for a minimum of ten years. A total of 142 patients with preoperative body mass index (BMI) of < 30 kg/m2 were in the control group (32 male, 110 female) and 42 patients with BMI of ≥ 30 kg/m2 were in the obese group (five male, 37 female). Pre- and postoperative range of movement (ROM), Knee Society Score (KSS), Oxford Knee Score (OKS), 36-Item Short-Form Health Survey (SF-36), and survivorship were analyzed.Aims
Patients and Methods
Patient-specific instrumentation (PSI) is a novel technique in total knee arthroplasty (TKA) which potentially permits more accurate alignment of the components; however, there is no consensus in literature regarding the accuracy and reliability of PSI as many studies have shown controversial and inconsistent results of various PSI systems. A 24-month follow-up study was carried out to compare perioperative clinical outcomes, radiological limb alignment and component positioning, as well as functional outcomes following TKA between PSI and conventional instrumentation (CI). During September 2011 and August 2012, 90 consecutive patients were scheduled to undergo unilateral TKA with either PSI or CI. TruMatch® Personalised Solutions was used in this study, and a senior surgeon performed all operations. Patients were clinically assessed before, 6-month and 24-month after surgery.Objective
Methods
Failures in total knee arthroplasty (TKA) have been associated with overall lower limb malalignment and component malposition. Although traditional computer navigation systems improve component placement, they require fixation of the femoral and tibial reference arrays for software recognition using anchoring pins. This increases the risk of bony fracture, pin sites infection and osteomyelitis. This study aims to evaluate the accuracy of a new hand held navigation system (BrainLAB® Dash® Navigation system) that will avoid these complications.Introduction
Aim
This study aims to evaluate the two-year post-operative clinical outcomes of patients undergoing total knee arthroplasty (TKA) with computer-assisted surgery (CAS) using a pinless navigation system (BrainLAB® VectorVision® Knee 2.5 Navigation System) versus standard CAS. We analysed prospectively collected data from patients who underwent TKA with CAS from November 2008 to October 2012 over a two year follow-up period by a single senior surgeon. Primary outcome measures include Short-Form 36 (SF-36), Oxford Knee (OKS) as well as Knee Society Scores (KSS).Purpose
Methods
We prospectively followed 171 patients who underwent
bilateral unicompartmental knee replacement (UKR) over a period
of two years. Of these, 124 (72.5%) underwent a simultaneous bilateral
procedure and 47 (27.5%) underwent a staged procedure. The mean
cumulative operating time and length of hospital stay were both
shorter in the simultaneous group, by 22.5 minutes (p <
0.001)
and three days (p <
0.001), respectively. The mean reduction
in haemoglobin level post-operatively was greater by 0.15 g/dl in
the simultaneous group (p = 0.023), but this did not translate into
a significant increase in the number of patients requiring blood
transfusion (p = 1.000). The mean hospital cost was lower by $8892
in the simultaneous group (p <
0.001). There was no significant
difference in the rate of complications between the groups, and
at two-year follow-up there was no difference in the outcomes between
the two groups. We conclude that simultaneous bilateral UKR can be recommended
as an appropriate treatment for patients with bilateral medial compartment
osteoarthritis of the knee. Cite this article:
Total knee arthroplasty is a painful operation. Peri-articular local anesthetic injections reduce post-operative pain and assist recovery. It is inconclusive whether intra-operative injections of peri-articular corticosteroids are of benefit. A prospective, randomized, double-blinded study was undertaken to assess the efficacy of adding peri-articular corticosteroids to intra-operative, peri-articular high volume local anaesthetic in post-operative pain management following TKA. 127 patients were randomised into three groups receiving local anaesthetic alone (control) or either low dose (40 mg) or high dose (80 mg) peri-articular corticosteroid plus local anaesthetic. Primary outcomes included ROM and visual analog pain scores (VAS). Pain was defined as the worst pain lasting for more than 20 minutes, measured at both rest (RVAS) and during activity (AVAS).Introduction
Methods
Total knee arthroplasty (TKA) has proven to be cost-effective and efficative in the treatment of osteoarthritic knees. Although traditional computer navigation systems improve implant placement, they require fixation of the femoral and tibial reference arrays for software recognition using anchoring pins. This increases the risk of bony fracture, pin sites infection and osteomyelitis. Our study aims to investigate the accuracy of a new inless navigation system (Brainlab VectorVision Knee 2.5 Navigation System) that would avoid these complications. 119 patients were prospectively recruited over a year. These patients all underwent a primary TKA by a senior surgeon who performs more than 200 TKAs per annum. They were divided into two surgical technique arms. In Group 1, 74 patients underwent TKA using conventional techniques. In Group 2, 45 patients underwent TKA using a pinless navigation system. Post-operative films were taken and three radiographic measurements were measured: 1) Hip-Knee-Ankle Angle (HKA); 2) Coronal Femoral-Component Angle (CFA); 3) Coronal Tibia-Component Angle (CTA) (Figure 1). Two reviewers blinded to the surgical method performed the measurements on the radiographic films on two separate occasions.Introduction
Methods
Restoration of the native joint line in total knee arthroplasty is important in restoring ligamentous balance and normal knee kinematics. Failure to achieve this could lead to reduced range of motion, patellofemoral maltracking and suboptimal outcomes. The purpose of this study was to analyse the clinical and functional outcome of patients who demonstrated joint line changes after computer-assisted (CAS) total knee arthroplasty (TKA). A prospective study was conducted for 168 patients (168 knees) who underwent CAS TKA by two surgeons at a single institution with an average follow-up of two years. The final change in joint line was calculated from the verified tibial resection, distal and posterior femoral cuts. Group A patients had joint line changes of less than 4mm and Group B patients had joint line changes of more than 4mm. Postoperative Oxford scores, Knee scores, Function scores and SF-36 scores were obtained at six months, one year and two years post-TKA. The final range of motion and the mechanical alignment were documented. There was significant linear correlation between joint line changes and Oxford scores (p = 0.05) and Function scores (p = 0.05) at six months and Oxford scores alone at two years with increasing joint line changes having poorer outcome scores. Group A compared to Group B patients have better outcomes in terms of Oxford scores (mean 20 vs 27, p = 0.0003), Function scores (mean 69 vs 59, p = 0.03), SF-1 (mean 63 vs 50, p = 0.03), SF-2 (mean 66 vs 43, p = 0.05), SF-5 (mean 75 vs 63, p = 0.04), SF-6 (mean 84 vs 59, p = 0.003), SF-7 (mean 96 vs 83, p = 0.02), SF-8 (mean 84 vs 73, p = 0.006) and total SF-36 scores (mean 603 vs 487, P = 0.003), at six months, and Oxford scores (mean 18 vs 23, p = 0.0007) at two years. In this study, CAS is a useful intra-operative tool for assessing the final joint line in TKA. Outliers in joint line changes of ≥ 4 mm are associated with poorer clinical outcome scores.
Controversy still exists in the literature regarding efficacy and usefulness of CASN in knee arthroplasty. However, obsession with basic alignments and proper correction of mechanical axes fails to recognise the full future potential of CASN which seems to lie in enhanced dynamic assessment. Basic dynamics usually at least includes intraoperative assessment of limb alignments, flexion-extension gap balancing and simple testing through ranges of motion. However our upgraded CASN system (Brainlab) is also capable of enhanced assessment not only including the provision of data on initial to final alignments but also contact point observations. The system can also perform an enhanced ‘Range Of Motion’ (ROM) analysis including observation of epicondylar axis motion, valgus and varus, antero-posterior shifts as well as flexion and extension gaps. Tracking values for both tibiofemoral and patellofemoral motion have also been obtained after performing registration of the prosthetic trochlea. Observations were then made using a set of standardised dynamic tests. Firstly, the lower leg was placed in neutral alignment and the knee put through a flexionextension cycle. Secondly the test was repeated but with the lower leg being placed into varus and internal rotation. The third test was performed with the lower leg in valgus and external rotation. We have been able to carry out these observations in a limited case series of 15 total knee arthroplasties and have found it possible to observe and quantify marked intra-operative variation in the stability characteristics of the implanted joints before corrections have been made and final assessments performed. Indeed contact point observation has found several cases of edge loading before corrections have been made. Also ROM analysis has demonstrated the ability of the system in other cases to observe and then make necessary adjustments of implant positions and ligament balance which alter the amounts of antero-posterior and lateral translations. In this way paradoxical antero-posterior and larger rotational movements have been minimised. Cases where conversion to posterior stabilisation has been necessary have been encountered. Also patellar tracking has been observed during such dynamic tests and appropriate adjustments made to components and soft tissue balancing. Although numbers in this case series are small, it has been possible to begin to observe, classify and quantify patterns of instability intra-operatively using simple stress tests. Such enhanced intra-operative information may in future make it possible to create algorithms for logical adjustments to ligament balance, component sizes, types and positions. In this way CASN becomes a more useful tool.
Patellofemoral complications in total knee arthroplasty (TKA) are common. Patellar tracking can be adversely affected by component positioning, soft tissue imbalance and bony deformity. Lateral patellar release rates reported in the literature vary from 6– 40%. Computer assisted surgery has largely been confined to the tibio-femoral component of total knee replacement. However, with recently developed software, it can be used to visualise and quantify patellar tracking and thus guide the precise extent and site of lateral patellar release. The aim of this early study was to define the diagnostic envelope for identification and quantisation of patella maltracking using a current generation patella navigation system. Our previous prospective analysis of 100 patients undergoing primary TKA identified pre-operative radiographic indices that correlate with maltracking of the patellofemoral joint. 20 cases were subsequently selected for computer assisted total knee replacement surgery. The navigation system (Vector Vision (BrainLab) version 1.6) was used to achieve accurate alignment and position of the femoral and tibial components. All knee replacements were performed using a posterior cruciate-retaining prosthesis. The femoral component was of a ‘patella-friendly’ design with inbuilt 3 degrees external rotation, and the patella was resurfaced in all cases with a biconvex inlay patellar prosthesis. Patellar tracking was assessed intra-operatively using an additional patellar array and patella tracking-specific software. Real-time displays of patella shift, tilt, rotation and circle radii during multiple flexion-extension cycles were obtained. Where necessary, an ‘outside-to-in’ release of the lateral retinacular complex was performed. The navigation system was used to provide contemporaneous feedback on the effect of the soft tissue releases on the tracking characteristics of the patella component on the prosthetic trochlea. Primary outcomes included the sensitivity and specificity of the system for peri-operative patella maltracking; secondary outcomes included the definition of interventional endpoints and correlation of intra-operative tracking data with post-operative x-rays. The demographic data for the 20 patients enrolled in this study was essentially unremarkable. As compared to standard intra-operative clinical evaluation of patella tracking, the computer navigation system is equally sensitive and specific, and it can potentially detect more subtle instances of maltracking that may elude conventional clinical evaluation. We present patterns of patellar tracking during the surgery for patient with and without pre-operative patellar maltracking. However, the significance of this is unknown without longer-term outcome data. Patella shift abnormalities that were detected by the system, but not tilt, correlated with clinical judgement of patella maltracking (p<
0.05). Soft tissue balancing of the patella can now be performed by observing precise changes in shift and tilt. This can be as important as component alignment for optimising patellar tracking and minimising patellofemoral complications.