Cobalt chrome-on-cobalt chrome bearing surfaces have been re-introduced despite some concerns regarding potential risks posed by soluble metallic by-products. We have investigated whether there are metal-selective differences between the levels of genetic damage caused to a human cell line when cultured with synovial fluids retrieved from various designs of orthopaedic joint replacement prostheses at the time of revision arthroplasty. Synovial fluids were retrieved from revision hip and knee arthroplasty patients with bearings made from cobalt chrome-on-cobalt chrome, cobalt chrome-on-polyethylene and stainless steel-on-polyethylene. Control synovial fluids were retrieved from primary arthroplasty cases with osteoarthritis. Synovial fluid was cultured with human primary fibroblasts for 48 hours in a cell culture system under standardised conditions. The “Comet” assay was used with an image analysis system to measure levels of DNA damage caused by the various synovial fluid samples. Synovial fluids from cobalt chrome-on-cobalt chrome and cobalt chrome-on-polyethylene joint replacements both caused substantial levels of genetic damage as detected by the Comet assay. Synovial fluids retrieved from stainless steel-on-polyethylene joints caused low levels of damage. The difference between these groups was highly statistically significant (p<
0.001). Control synovial fluids from osteoarthritic joints caused minimal changes. Atomic absorption spectroscopy demonstrated that the metal-on-metal synovial fluids contained the highest levels of cobalt and chromium. Different alloys used in orthopaedic implants are associated with different levels of DNA damage to cultured human cells in vitro. We are able to demonstrate that this damage is attributable at least in part to the metal content of the synovial fluid samples. We have no evidence for any long-term health risk to patients with such implants.
Metal-on-metal bearing surfaces have been reintroduced for use in total hip replacement, despite concerns regarding the potential risks posed by metallic by-products. We have compared periprosthetic tissues from metal-on-metal and metal-on-polyethylene hip replacements at revision surgery with control tissues at primary arthroplasty. Tissues were obtained from 9 control, 25 contemporary metal-on-metal, 9 CoCr-on-polyethylene and 10 titanium-on-polyethylene hip replacement arthroplasties. Each was processed for routine histology with Haematoxylin and Eosin. Quantitative stereological analysis was performed at the light microscopic level. Metal-on-metal sections showed more surface ulceration and this was correlated with the density of inflammation in the deeper tissues layers. Metal-on-metal tissues displayed a pattern of well-demarcated tissue layers, which were rarely seen in metal-on-polyethylene cases. In metal-on-polyethylene cases, the inflammation was predominantly histiocytic. Metal-on-metal cases by contrast showed a lymphocytic infiltrate with abundant plasma cells. Metal-on-metal tissues showed a striking pattern of peri-vascular inflammation with prominent lymphocytic cuffs especially deep to areas of surface ulceration. Levels of inflammation were higher in cases revised for failure than in those retrieved at autopsy or exploratory surgery. Total replacement and surface replacement designs of metal-on-metal arthroplasty showed similar histological changes. Plasma cells were not seen in any of the metal-on-polyethylene cases. The differences between the patterns of inflammation and cellular infiltration seen in metal-on-metal and metal-on-polyethylene tissues were highly statistically significant. The pattern and type of inflammation in periprosthetic tissues from metal-on-metal and metal-on-poly-ethylene arthroplasties is very different. Our findings support the conclusion that metal-on-metal articulations are capable of generating a form of immunological response to metallic wear debris that has not been described previously. The incidence and clinical implications of these immunological responses in failed metal-on-metal joints are unknown.
In contrast, the release of the inflammatory cytokine TNF-α and the multifunctional growth factor TGF-β-2 occurred at lower doses (0.0005 to 5 μm3/cell for TNF-α and 0.5 to 50 μm3/cell for TGF-β-2). No release of IL-6 was detected at any dose. Only growth factor FGF-23 was increased in similar pattern to the DNA damage.
Joint replacement failure is usually caused by the formation of wear debris resulting in aseptic loosening. Particulate metal and soluble metal ions from orthopaedic alloys (cobalt chromium or vanadium titanium aluminium) that are used in medical prostheses can accumulate in tissues and blood leading to increased chromosome aberrations in bone marrow and peripheral blood lymphocytes. This paper demonstrates that two of the metals used in orthopaedic prostheses, chromium and vanadium can produce delayed as well as immediate effects on the chromosomes of human fibroblasts in vitro. Fibroblasts were exposed to metal ions for only 24 hours and were then expanded over 30 population doublings involving ten passages. The initial increase of chromosomal aberrations, micronuclei formation and cell loss due to lethal mutations persisted over multiple population doublings, thereby demonstrating genomic instability. Differences were seen in the reactions of normal human fibroblasts and those infected with a retrovirus carrying the cDNA encoding hTERT that rendered the normal human fibroblasts telomerase-positive and replicatively immortal. This suggests that chromosomal instability caused by metal ions is influenced by telomere length or telomerase activity. Formerly this syndrome of genomic instability has been demonstrated in two forms following irradiation. One type is non-clonal and involves the appearance of lethal aberrations that cannot have been carried by the surviving cells. The other type is clonal and the aberrations are not lethal. These may arise as a result of complex rearrangements occurring at a high rate post-insult in surviving cells. The consequences of genomic instability are not yet known but it is possible that the increase of chromosomal aberrations that have been previously observed in human patients could be due to immediate and delayed expression of cellular damage after exposure to orthopaedic metals.
Wear debris from worn cobalt chrome joint replacements causes an increase in chromosomal translocations and aneuploidy. In this study the relationship between the amount of DNA damage and the changes in gene expression was investigated in human fibroblasts after exposure to artificial cobalt chrome particles. The comparison was made with different doses of particles, at different time intervals and in fibroblasts of different ages, those that had completed 10 population doublings (10 PD fibroblasts) and those that had completed 35 population doublings (35 PD fibroblasts). The genes (TGF-©¬2, p38 MAPK, Integrin ¥â1, SOD1, Caspase 10, PURA, FRA-1 and VNR) were chosen after a previous screen with cDNA microarrays. The percentage of senescent cells was evaluated using an immunohistochemical assay for ¥â-galactosidase activity. The 35 PD fibroblasts showed significantly more ¥â-galactosidase activity than the 10 PD fibroblasts. The level of DNA damage, as detected with the alkaline comet assay, was greater at higher doses, at longer exposures (up to 24 hours) and in 10 PD fibroblasts. The expression of all the genes listed above was generally lower after exposure to cobalt chrome particles using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The reduction in gene expression, like the increase in DNA damage was greater at higher doses and at longer exposure times. After 24hr exposure the reduction in gene expression was greater in 10 PD fibroblasts compared to 35 PD fibroblasts. After 6hr exposure this was only true at higher doses of particles and the opposite was seen after a lower dose of particles. These results show that levels of gene expression of TGF-©¬2, p38 MAPK, Integrin ¥â1, SOD1, Caspase10, PURA, FRA-1 and VNR may be correlated with the level of DNA damage and that this depends on the dose and length of exposure and the age of the cells. This highlights the potential importance of these genes in the mutagenicity of cobalt chrome particles in human fibroblasts.
Metal-on-metal joint replacements have been reintroduced despite some concerns regarding the potential risks posed by soluble metallic by-products. We have investigated whether there are metal selective differences between the levels of genetic damage caused to a human cell line when cultured with synovial fluids retrieved from orthopaedic joint replacement prostheses at the time of revision arthroplasty.
In a post-mortem study, we compared subjects with metal implants with and without visible wear with an age-matched control group to determine the extent and effects of dissemination of wear debris. In subjects with stainless-steel and cobalt-chrome prostheses metal was found in local and distant lymph nodes, bone marrow, liver and spleen. The levels were highest in subjects with loose, worn joint prostheses and the main source of the debris was the matt coating. Metal levels were also raised in subjects with implants without visible wear and, to a less extent, in those with dynamic hip screws. Necrosis of lymph nodes was seen in those cases with the most wear, and potential damage to more distant organs such as the bone marrow, liver and spleen in the long term cannot be discounted. The consequences for the immune system and the role of metal dissemination in the possible induction of neoplasia are discussed.
The production of particulate wear debris is a recognised complication of joint arthroplasty, but interest has concentrated on local tissue reactions and a possible association with implant loosening. The fate of wear products in the body remains unknown, although some of the metals used in the construction of orthopaedic implants are known to have toxic and oncogenic properties. We report histological and electron-microscopic evidence from two cases which shows that metallic debris can be identified in the lymphoreticular tissues of the body distant from the hip some years after joint replacement. The increase in the use of total arthroplasty in younger patients, the development of new alloys and the use of porous coatings must raise concern for the long-term effects of the accumulation of wear debris in the body.