Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

SYNOVIAL FLUID FROM JOINTS CONTAINING COBALT CHROMIUM BEARING SURFACES CAUSE MORE GENETIC DAMAGE TO CULTURED HUMAN CELLS THAN FLUID FROM JOINTS MADE OF STAINLESS STEEL



Abstract

Metal-on-metal joint replacements have been reintroduced despite some concerns regarding the potential risks posed by soluble metallic by-products. We have investigated whether there are metal selective differences between the levels of genetic damage caused to a human cell line when cultured with synovial fluids retrieved from orthopaedic joint replacement prostheses at the time of revision arthroplasty.

Methods: Synovial fluids were retrieved from revision hip and knee arthroplasty patients with bearings made from Cobalt chrome-on-Cobalt chrome, Cobalt chrome-on-polyethylene and Stainless Steel-on-polyethylene. Control synovial fluids were retrieved from primary arthroplasty cases with osteoarthritis and no implant in situ. Synovial fluid was cultured with human primary fibroblasts for 48 hours in a cell culture system under standardised conditions. The ‘Comet’ assay was used with an image analysis system to measure levels of DNA damage caused by the various synovial fluid samples. Metal levels were measured in the synovial fluid samples using atomic absorption spectroscopy.

Results: Synovial fluids from Cobalt Chrome-on-Cobalt Chrome and Cobalt Chrome-on-polyethylene joint replacements both caused substantial levels of genetic damage as detected by the Comet assay. Synovial fluids retrieved from Stainless Steel-on-polyethylene joints caused low levels of damage. The difference between these groups was highly statistically significant (p< 0.001). Control synovial fluids from osteoarthritic joints caused minimal changes. Atomic absorption spectroscopy demonstrated that the metal-on-metal synovial fluids contained substantially more cobalt and chromium than the fluids retrieved from cobalt chrome-on-polyethylene joints. Stainless steel-on-polyethylene synovial fluids contained the least metal.

Conclusions: Different alloys used in Orthopaedic implants are associated with different levels of DNA damage to cultured human cells in vitro. We are able to demonstrate that this damage is attributable at least in part to the metal content of the synovial fluid samples. We have no evidence for any long-term health risk to patients with such implants. Further research is needed in this field.

Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.