header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Spine

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 1 - 1
1 Apr 2014
Price A Gardner A Baker D Berryman F Pynsent P
Full Access

Aim:

AIS causes a loss of trunk height. This paper documents this loss against sitting height standards and assesses formulae for adjusting height loss back to the standard.

Methods:

A total of 334 patients (84% female) with AIS and no other known systemic disease had sitting height measured. This was compared to standards of sitting height with age and the ratio of height to sitting height with age (HSH).

The corrected height was calculated using published formulae and replotted against these standards.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 22 - 22
1 Jun 2012
Kotecha A Berryman F Baker D Pynsent P Gardner A Marks D Spilsbury J
Full Access

Introduction

Monitoring of scoliosis is traditionally done with radiographs, which can be associated with an increased risk of cancer secondary to multiple exposures over many years. This study investigated whether the findings from surface topography can be used to monitor scoliosis curves and how much this method affects outcome scores in patients with scoliosis. This study therefore had two subsets: (1) to investigate whether lateral asymmetry (LA) from ISIS2 surface topography can predict radiographic Cobb angle, providing an alternative non-invasive means of monitoring patients with scoliosis (LA and Cobb subset); and (2) to establish the relationships between the magnitude of the deformity in scoliosis, measured by Cobb angle on radiograph and volumetric asymmetry (VA) with the ISIS2 surface topography, and the patient perception of self-image and mental health, measured with SRS-22 scores (Cobb, VA, and SRS subset).

Methods

In the LA and Cobb subset, 72 untreated patients with scoliosis (77 curves) with a Cobb angle of 55° or less were included in the study. They had clinical assessment, Cobb angle measurement taken from a standard radiograph, and surface topography done on the same day. A comparison of Cobb angle and LA was done. In the Cobb, VA, and SRS subset, 89 untreated patients with scoliosis were included in the study. They had clinical assessment, Cobb angle measurement of radiograph, and surface topography done on the same day along with SRS-22 questionnaires. A comparison correlation of SRS scores for function, pain, self-image, and mental health against Cobb angle and VA was undertaken. All statistical analysis was done with software R.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XX | Pages 1 - 1
1 May 2012
Kotecha AK Berryman F Baker D Pynsent P Gardner A Marks D Spilsbury J
Full Access

Purpose of the study

To establish the relation between the magnitude of the deformity in scoliosis, measured by cobb angle on radiograph & Volumetric asymmetry with the ISIS2 surface topography, and the patient perception of self image and mental health, measured with SRS-22 scores.

Methodology

A total of 89 untreated patients with scoliosis were included in the study. They had clinical assessment, cobb angle measurement of radiograph and surface topography performed on the same day along with SRS-22 questionnaires. The cobb angle was measured by single surgeon using a digital PACS system, who was unaware of the volumetric asymmetry score. Volumetric asymmetry was measured by ISIS2 surface topography performed by a research nurse who was unaware of the cobb angle. Volumetric asymmetry was calculated using standard ISIS2 software. A comparison correlation of SRS scores for function, pain, self image and mental health against cobb angle and volumetric asymmetry was undertaken by clinical scientist. Scores for patient satisfaction to treatment was excluded as these were untreated patients. Statistical analysis was performed using cor. test on software R


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XX | Pages 2 - 2
1 May 2012
Kotecha AK Berryman F Baker D Pynsent P Gardner A Marks D Spilsbury J
Full Access

Purpose of the study

Monitoring of scoliosis is traditionally done with radiographs which can be associated with an increased risk of cancer secondary to multiple exposures over many years. This study investigates whether lateral asymmetry (LA) from ISIS2 surface topography can predict radiographic cobb angle, to provide an alternative non- invasive means of monitoring scoliosis patients.

Methods

A total of 72 untreated patients with scoliosis (77 curves) with a Cobb angle of 55 degrees or less were included in the study. They had clinical assessment, cobb angle measurement taken from a standard radiograph and surface topography done on the same day. The cobb angle were measured by single surgeon using digital PACS system. The surgeon was unaware of the LA score. Lateral asymmetry was measured using ISIS2 surface topography done by a research nurse who was also unaware of the cobb angle as previously described. Lateral asymmetry was calculated using the standard ISIS2 software. A comparison of cobb angle and LA was performed.

Linear regression analysis was performed to define an equation predicting Cobb from LA. The predicted Cobb angles were then compared with the measured radiographic Cobb angles using Bland-Altman analysis. All statistical analysis was carried out using R.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 149 - 149
1 Apr 2012
Benson R Berryman F Nnadi C Reynolds J Lavy C Bowden G Macdonald J Fairbank J
Full Access

Plain radiography has traditionally been used to investigate and monitor patients with adolescent idiopathic scoliosis. The X-ray allows a calculation of the Cobb angle which measures the degree of lateral curvature in the coronal plane. ISIS2 is a surface topography system which has evolved from ISIS, but with much higher precision and speed. It measures the three dimensional shape of the back using structured light and digital photography. This system has the benefit of not requiring any radiation. Lateral asymmetry is the ISIS clinical parameter estimating the curve of the spine in the coronal plane. The aim of this study was to compare this parameter to the Cobb angle measured on plain X-ray.

Twelve patients with idiopathic adolescent scoliosis underwent both a standing AP spine X-ray and an ISIS2 scan on multiple occasions. Both scan and X-ray were done within one month of each other. No patient underwent surgery during the study period. The Cobb angle and the degree of lateral asymmetry were calculated.

Twelve patients mean age 12.5 years (range 10-16) were investigated using both ISIS2 and X-ray. They had a mean 2.3 (1-5) combined investigations allowing for 30 comparisons. The correlation between the two measurements was r =0.63 (p=0.0002). The Cobb angle measured on ISIS2 was less than that measured by radiograph in 27 out of 30 comparisons. The mean difference between the measurements was mean 6.4° with a standard deviation of 8.2° and 95% confidence interval of 3.3° to 9.4°.

In adolescent idiopathic scoliosis, curve severity and rib hump severity are related but measure different aspects of spinal deformity. As expected, these relate closely but not precisely. ISIS2 offers the promise of monitoring scoliosis precisely, without adverse effects from radiation. The small numbers in this series focus on the group of patients with mild to moderate curves at risk of progression. In this group, ISIS2 was able to identify curve stability or progression, without exposing the subjects to radiation.