Abstract
Plain radiography has traditionally been used to investigate and monitor patients with adolescent idiopathic scoliosis. The X-ray allows a calculation of the Cobb angle which measures the degree of lateral curvature in the coronal plane. ISIS2 is a surface topography system which has evolved from ISIS, but with much higher precision and speed. It measures the three dimensional shape of the back using structured light and digital photography. This system has the benefit of not requiring any radiation. Lateral asymmetry is the ISIS clinical parameter estimating the curve of the spine in the coronal plane. The aim of this study was to compare this parameter to the Cobb angle measured on plain X-ray.
Twelve patients with idiopathic adolescent scoliosis underwent both a standing AP spine X-ray and an ISIS2 scan on multiple occasions. Both scan and X-ray were done within one month of each other. No patient underwent surgery during the study period. The Cobb angle and the degree of lateral asymmetry were calculated.
Twelve patients mean age 12.5 years (range 10-16) were investigated using both ISIS2 and X-ray. They had a mean 2.3 (1-5) combined investigations allowing for 30 comparisons. The correlation between the two measurements was r =0.63 (p=0.0002). The Cobb angle measured on ISIS2 was less than that measured by radiograph in 27 out of 30 comparisons. The mean difference between the measurements was mean 6.4° with a standard deviation of 8.2° and 95% confidence interval of 3.3° to 9.4°.
In adolescent idiopathic scoliosis, curve severity and rib hump severity are related but measure different aspects of spinal deformity. As expected, these relate closely but not precisely. ISIS2 offers the promise of monitoring scoliosis precisely, without adverse effects from radiation. The small numbers in this series focus on the group of patients with mild to moderate curves at risk of progression. In this group, ISIS2 was able to identify curve stability or progression, without exposing the subjects to radiation.