Osteomyelitis is an infection of bone or bone marrow with a concomitant inflammation involving the bone marrow and the surrounding tissues. Chronic osteomyelitis is historically treated in a two-stage fashion with antibiotic-loaded polymethylmethacrylate as local antibacterial therapy. Two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. Next to antibiotic releasing biomaterials, S53P4 bioactive glass is a biomaterial that enables one-stage surgery in local treatment of chronic osteomyelitis. S53P4 bioactive glass is gaining interests in recent years in clinical treatment of chronic osteomyelitis in a one-stage fashion due to its antibacterial and bone regenerating capacities. By changing local pH and osmotic pressure S53P4 bioactive glass attack bacteria in a different way as compared to antibiotics. In this presentation, we will present current clinical treatment options for osteomyelitis, clinical results and level of evidence of various biomaterials used in osteomyelitis treatment. In addition, the clinical results and health-economic results of S53P4 bioactive glass will be detailed. Thereafter a summary of the current standing across the board in osteomyelitis treatment will be provided.
Because of its high strength and allowance for bone integration, Ti-6Al-4V is the most commonly used material for load bearing bone implants. Compared to conventional production methods, 3D printing Ti-6Al-4V introduces advantages as (near-) net-shape manufacturing of complex geometries, and optimization of utilization rate of the material. However, as result of the additively production procedure, microstructure and surface properties differ from those manufactured using conventional techniques. Therefore, the resulting mechanical properties and biocompatibility of the 3D printed Ti-6Al-4V are investigated in this study. First, it was aimed to reveal the tensile properties of the material and verify if these depend on build orientation. Second, it was determined which post process method provides the best osteoconductivity. Tensile specimens were designed and 3D printed using Selective Laser Melting (SLM) technique. Subsequently, specimens were heat treated and tensile properties were determined as described in ASTM E 8M-04. Cell culture discs were manufactured using the same production method. The influence of two different surface treatments (sand-blasting versus polishing) on osteoconductivity was analysed by a 30 day Introduction
Materials and methods
Novel radiopaque UHMWPE sublaminar cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system for the surgical treatment of early onset scoliosis. Growth-guidance or self-lengthening rod systems are an alternative to subcutaneous growing rods and the vertical expandable prosthetic titanium rib for the treatment of early onset scoliosis. Their main perceived advantage over growing rods is the marked decrease in subsequent operative procedures. The Shilla growth-guidance system and a modern Luque trolley are examples of such systems; both depend on gliding pedicle screws and/or sliding titanium sublaminar wires. However, the unknown consequences of metal-on-metal wear debris are reason for concern especially in young patients. In this study, instrumentation stability, residual growth in the operated segment after surgery and biocompatibility of the novel radiopaque UHMWPE cables as an alternative to gliding pedicles screws or titanium sublaminar wires were assessed in an immature sheep model.Summary Statement
Introduction