The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. Objectives
Methods
Pelvic osteolysis secondary to polyethylene wear is a major complication following THR. Identification of implant specific characteristics associated with osteolysis is essential. The purpose of this study is to compare incidence of CT scan identifiable osteolysis in 2 groups of young, active patients following THR; one with multi-holed acetabular shells with screws, one with cups without screw holes. Between 1990–1993, 77 patients (85 hips) underwent THR with a cementless titanium, multi-holed shell with screws, modular, compression molded polyethylene and an uncemented titanium femoral stem. Average follow-up: 9 years, average age at surgery: 51 years. Between 1984–1987, 163 patients (183 hips) underwent THR with a cementless cobalt-chrome, solid shell, modular, heat-pressed polyeth-ylene liner and uncemented cobalt-chrome femoral stem. Average follow-up: 16 years, average age at operation: 52 years. All polyethylene was irradiated in air. At most recent follow-up, CT scans with metal suppression software was obtained to evaluate incidence of pelvic osteolysis. Patients classified: Group 1-no osteolysis, Group 2-cavitary osteolysis, Group 3-segmental osteolysis. Patients with titanium, multi-holed shells had: Group 1-50.0%, Group 2-38.7%, and Group 3-11.3%. Patients with cobalt-chrome, solid shells had: Group 1-59.3%, Group 2-33.3% and Group 3-7.4%. Although the patients with solid cups had much longer follow-up, less secure capture mechanism, less congruency between polyethylene and shell, and heat-pressed polyethylene, the incidence and extent of pelvic osteolysis was less than in the patients with multi-holed shell with screws. The presence of 6.5 mm cancellous screws is a serious independent risk factor for pelvic osteolysis following THR.
The objective of this present study was to determine the in vivo kinematic patterns for subjects implanted with a patellofemoral arthroplasty (PFA). Twenty subjects, all having a PFA, were studied (<
2 years post-op) under fluoroscopic surveillance to determine patellofemoral contact positions, sagittal plane, and medial/lateral translation using a skyline view. The patellofemoral contact patterns for each subject having a PFA was highly variable, 11.9 mm of translation. The average amount of patella rotation during the full flexion cycle was 26.3 degrees, while one subject experienced 48.6 degrees. The average amount of medial/lateral translation was 3.8 mm (5 >
5 mm). Five subjects experienced grater than 5 mm of motion. This was the first study to ever determine the in vivo kinematics for subjects having a PFA and the in vivo medial/lateral translation patterns of the patellofemoral joint. Subjects in this study experienced high variability and some abnormal rotational patterns. Most of the subjects who underwent PFA in this study had a previous history of subluxed or dislocated patella which affects the normal patella tracking, especially regarding tilting and translation. This tracking may also be directly affected by patellofemoral conformity, a consequence of femoral implant design. Finally, after PFA the patello-tibial tilt angle is influenced by the anteroposterior positioning of the femoral component. The results of this very first in vivo kinematic study may play an important role, not only for design consideration of patellofemoral replacement but also for surgical technique in order to obtain optimal implant positioning.
The objective of the present study was to analyse kinematics of subjects having a UKA during stance phase of gait, where the ACL was intact at the time of the operative procedure. Femorotibial contact positions for nineteen subjects (15 medial UKA (MUA); 14 lateral UKA (LUA); HSS >
90, post-op >
3 yrs) were analysed using video fluoroscopy. During stance-phase of gait, on average, subjects having a medial UKA experienced 0.8 mm of anterior motion (7.7 to – 2.3 mm), while subjects having a lateral UKA experienced −0.4 mm (0.9 to – 2.1 mm) of posterior femoral rollback (PFR). Eight of 15 subjects having a medial UKA and two out of four lateral UKA experienced PFR. Eight of 15 subjects having a medial UKA experienced normal axial rotation (average = 0.9 degrees) and one out of four subjects having a lateral UKA experienced normal axial rotation (average = −6.0 degrees). High variability in the kinematic data for subjects experiencing an anterior slide and opposite axial rotation suggests that these subjects had an ACL that was not functioning properly and was unable to provide an anterior constraint force with the necessary magnitude to thrust the femur in the anterior direction at full extension. Progressive laxity of the ACL may occur over time, and at least in part, lead to premature polyethylene wear occasionally seen in UKA. Our results support the findings of other studies that the ACL plays a significant role in maintaining satisfactory knee kinematics, which may also, in part, contribute to UKA longevity.
The objective of this present study is to conduct a comparative analysis of the kinematic data derived for all subjects having a TKA who were analysed over the past eight years at our laboratory. Femorotibial contact positions for 705 subjects having either a fixed bearing PCR or PS TKA or mobile bearing TKA were analysed in three-dimensions using video fluoroscopy. During a deep knee bend, all PS TKA types subjects experienced a medial pivot motion, averaging −3.8 of lateral condyle posterior femoral rollback (PFR), respectively. Subjects having a fixed bearing PCR TKA experienced only −0.7 mm of lateral condyle PFR and an anterior slide of 1.6 mm for the medial condyle. Twenty-nine percent of the PCR TKA analysed had a lateral pivot and 71% experienced a medial pivot. Subjects having a mobile bearing TKA experienced −2.8 mm of lateral condyle PFR and 0.4 mm of medial condyle anterior slide. Fifty-one percent of the moble bearing implants experienced a medial pivot and 43% experienced a lateral pivot. During gait, PS and PCR fixed bearing TKA types experienced similar kinematic patterns. Subjects having a mobile bearing TKA experienced minimal motion, probably due to the mobile bearing TKA having greater sagittal conformity and had the lowest standard deviation. There was great variability in the data comparing various TKA designs. Subjects in this multicentre analysis predominantly experienced a medial pivot motion, although certain TKA designs did demonstrate a lateral pivot motion.
We have reviewed 60 patients with primary bone infections; 21 of these (35%) had subacute osteomyelitis, a figure which supports other recent observations that this variant of bone infection is becoming more widespread. In this group open culture and biopsy were necessary in order to exclude bony malignancy, and a raised erythrocyte sedimentation rate proved a useful diagnostic aid. All the patients with acute osteomyelitis or with vertebral infection responded to primary treatment, but five of those with subacute osteomyelitis had recurrences.