Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

AN IN VIVO DETERMINATION OF KINEMATICS FOR SUBJECTS HAVING A PATELLOFEMORAL IMPLANT



Abstract

The objective of this present study was to determine the in vivo kinematic patterns for subjects implanted with a patellofemoral arthroplasty (PFA).

Twenty subjects, all having a PFA, were studied (< 2 years post-op) under fluoroscopic surveillance to determine patellofemoral contact positions, sagittal plane, and medial/lateral translation using a skyline view.

The patellofemoral contact patterns for each subject having a PFA was highly variable, 11.9 mm of translation. The average amount of patella rotation during the full flexion cycle was 26.3 degrees, while one subject experienced 48.6 degrees. The average amount of medial/lateral translation was 3.8 mm (5 > 5 mm). Five subjects experienced grater than 5 mm of motion.

This was the first study to ever determine the in vivo kinematics for subjects having a PFA and the in vivo medial/lateral translation patterns of the patellofemoral joint. Subjects in this study experienced high variability and some abnormal rotational patterns. Most of the subjects who underwent PFA in this study had a previous history of subluxed or dislocated patella which affects the normal patella tracking, especially regarding tilting and translation. This tracking may also be directly affected by patellofemoral conformity, a consequence of femoral implant design. Finally, after PFA the patello-tibial tilt angle is influenced by the anteroposterior positioning of the femoral component.

The results of this very first in vivo kinematic study may play an important role, not only for design consideration of patellofemoral replacement but also for surgical technique in order to obtain optimal implant positioning.

The abstracts were prepared by Nico Verdoschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, Universitair Medisch Centrum, Orthopaedie / CSS1, Huispost 800, Postbus 9101, 6500 HB Nijmegen, Th. Craanenlaan 7, 6525 GH Nijmegen, The Netherlands.