Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 35 - 35
1 Jul 2020
Tsukamoto I Yamagishi K Nakagawa K Inoue S Akagi M
Full Access

We proposed the substitute anteroposterior (sAP) line of the tibia for medial unicompartmental knee arthroplasty (UKA), which connects the medial border of the patellar tendon at the articular surface level and the medial intercondylar tubercle of the tibia. However, it has not been shown that referencing this line improves the rotational alignment of the components. Therefore, in this study, we investigated whether the tibial component could be implanted perpendicular to the SEA by referencing the sAP line and whether referencing the sAP line could reduce the rotational mismatch between the femoral and the tibial components.

Postoperative computed tomography datasets from 60 lower limbs in 57 Japanese patients with medial UKA were used. Among these, 30 knees were operated using the sAP line for AP reference and other 30 knees using the medial intercondylar ridge (MIR) line. First, the angle between the AP orientation of the tibial component and the surgical epicondylar axis (SEA) was measured. Then, the rotational mismatch angle between the components was measured.

The tibial and femoral components placed referencing the sAP line were externally rotated 90.7°±3.2° and 91°±7.7° relative to the SEA, respectively, those referencing the MIR line were 94.9°±8.5° and 91.2°±7.7°, respectively. When referencing the sAP line, the orientation of the component was more perpendicular to the SEA (Student t-test, unpaired, P = .016) and rotational variability of the tibial component was significantly smaller (F test, P < 0 .0001). The rotational mismatch angle when referencing the sAP line and the MIR line was 0.3°±8.3°and −3.8°±6.7°, respectively. Referencing the sAP line significantly reduced the rotational mismatch between the components (Student t-test, unpaired, P = .045).

Referencing the sAP line in the medial UKA may be useful to determine the AP orientation of the tibial component.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 29 - 29
1 Mar 2017
Mori S Inoue S Asada S Tsukamoto I Akagi M
Full Access

Background

Several studies have reported that tibial component in varus alignment can worsen the survivorship of medial unicompartmental knee arthroplasty (UKA). On the other hand, Varus/valgus inclination of the tibial component can affect the location of the contact point between femoral and tibial component especially in round on flat bearing surface design. Along with the tibial component inclination, changes in the contact point may also alter the tibial condylar bone stress, which would affect the longevity or complications after UKA.

Method

We constructed a validated three-dimensional finite element model of the tibia with a medial component and assessed stress concentrations by changing the tibial component coronal inclinations (squale inclination, 3° and 6° varus, 3° and 6° valgus inclination). We evaluated the Von Mises stress on the medial tibial metaphyseal cortex and the proximal resected surface when a load of 900N was applied on the tibial component surface by two conditions in each inclination models; one is that the loading site is fixed at the mediolateral center of the tibial component (fixed model), and the other is that the loading site is variable depending on the tibial component inclination (variable model) (Fig.1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 53 - 53
1 Jan 2016
Mori S Asada S Inoue S Matsushita T Hashimoto K Akagi M
Full Access

Objective

Tibia vara seen in Japanese patients reportedly influences the tibial component alignment when performing TKA. However, it is unclear whether tibia vara affects the component position and size selection. We therefore determined (1) the amount of medial tibial bow, (2) whether the tibia vara influences the aspect ratio of the tibial resected surface in aligning the tibial component with the tibial shaft axis (TSA), and (3) whether currently available tibial components fit the shapes of resected proximal tibias in terms of aspect ratio.

Material and Methods

The study was performed using CT data from 90 lower limbs in 74 Japanese female patients with primary varus knee OA, scheduled for primary TKAs between January 2010 and March 2012. We measured the tibia vara angle (TVA; the angle between the TSA and the tibial mechanical axis), proximal varus angle (PVA; angle between the TSA and the line connecting the center of the tibial eminence and the center of the proximal 1/3 of the tibia) using three-dimensional preoperative planning software [Fig.1]. Then the mediolateral and middle AP dimensions of the resected surface when the tibial component was set so that its center aligned with the TSA was measured. We determined the correlations of the aspect ratio (the ML dimension divided by the AP dimension) of the resected surface with TVA or PVA and compared the aspect ratios to those of five prosthesis designs.