Advertisement for orthosearch.org.uk
Results 1 - 20 of 64
Results per page:

Aims. There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation. Methods. Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured. Results. Micromotions in FEMs without a blocking screw significantly increased as nail/medullary canal mismatch increased, but were similar between FEMs with a blocking screw regardless of mismatch. Stress concentration at the nail construct was observed at the junction of the nail body and lag screw in all FEMs, and increased as nail/medullary canal mismatch increased, regardless of blocking screws. Mean stresses over regions of interest in FEMs with a blocking screw were much lower than regions of interest in those without. Mean stresses in FEMs with a blocking screw were lower than the yield strength, yet mean stresses in FEMs without blocking screws having 8 mm and 10 mm mismatch exceeded the yield strength. All mean stresses at distal locking screws were less than the yield strength. Conclusion. Using an additional anteroposterior blocking screw may be a simple and effective method to enhance fixation stability in unstable pertrochanteric fractures with a large nail/medullary canal mismatch due to osteoporosis. Cite this article: Bone Joint Res 2022;11(3):152–161


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 32 - 32
2 Jan 2024
Depboylu F Yasa E Poyraz Ö Korkusuz F
Full Access

Decreasing the bulk weight without losing the biomechanical properties of commercial pure titanium (Cp-Ti) medical implants is now possible by using Laser Powder Bed Fusion (L-PBF) technology. Gyroid lattice structures that have precious mechanical and biological advantages because of similarity to trabecular bone. The aim of the study was to design and develop L-PBF process parameter optimization for manufacturing gyroid lattice Cp-Ti structures. The cleaning process was then optimized to remove the non-melted powder from the gyroid surface without mechanical loss. Gyroid cubic designs were created with various relative densities by nTopology. L-PBF process parameter optimization was progressed using with Cp-Ti (EOS TiCP Grade2) powder in the EOS M290 machine to achieve parts that have almost full dense and dimensional accuracy. The metallography method was made for density. Dimensional accuracy at gyroid wall thicknesses was investigated between designed and manufactured via stereomicroscope, also mechanical tests were applied with real time experiment and numerical analysis (ANSYS). Mass loss and strut thickness loss were investigated for chemical etching cleaning process. Gyroid parts had 99,5% density. High dimensional accuracy was achieved during L-PBF process parameters optimization. Final L-PBF parameters gave the highest 19% elongation and 427 MPa yield strength values at tensile test. Mechanical properties of gyroid were controlled with changing relative density. A minute chemical etching provided to remove non-melted powders. Compression test results of gyroids at numerical and real-time analysis gave unrelated while deformation behaviors were compatible with each other. Gyroid Cp-Ti osteosynthesis mini plates will be produced with final L-PBF process parameters. MTT cytotoxicity test will be characterized for cell viability. Acknowledgements This project is granted by TUBITAK (120N943). Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 36 - 36
1 Feb 2021
Spece H Kurtz S Yu T Marcolongo M Law A
Full Access

Introduction. The ability to create patient-specific implants (PSI) at the point-of-care has become a desire for clinicians wanting to provide affordable and customized treatment. While some hospitals have already adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments, recent innovations have allowed for the printing of high-temperature implantable polymers including polyetheretherketone (PEEK). With interest in FFF PEEK implants growing, it is important to identify methods for printing favorable implant characteristics such as porosity for osseointegration. In this study, we assess the effect of porous geometry on the cell response and mechanical properties for FFF-printed porous PEEK. We also demonstrate the ability to design and print customized porous implants, specifically for a sheep tibial segmental defect model, based on CT images and using the geometry of triply periodic minimal surfaces (TPMS). Methods. Three porous constructs – a rectilinear pattern and gyroid/diamond TPMSs – were designed to mimic trabecular bone morphology and manufactured via PEEK FFF. TPMSs were designed by altering their respective equation approximations to achieve desired porous characteristics, and the meshes were solidified and shaped using a CAD workflow. Printed samples were mCT scanned to determine the resulting pore size and porosity, then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated, and the samples were imaged via SEM. The structures were tested in compression, and stiffness and yield strength values were determined from resulting stress-strain plots. Roughness was determined using optical profilometry. Finally, our process of porous structure design/creation was modified to establish a proof-of-concept workflow for creating PSIs using geometry established from segmented sheep tibia CT images. Results. ALP activity measurements of the porous PEEK samples at 7 and 14 days were significantly greater than for solid controls (p < 0.001 for all three designs, 14 days). No difference between the porous geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK and into the pore openings, with filopodia and lamellipodia extensions apparent. mCT imaging showed average pore size to be 545 ± 43 µm (porosity 70%), 708 ± 64 µm (porosity 68%), and 596 ± 94 µm (porosity 69%) for the rectilinear, gyroid, and diamond structures, respectively. The average error between the theoretical and actual values was −16.3 µm (pore size) and −3.3 % (porosity). Compression testing revealed elastic moduli ranging from 210 to 268 MPa for the porous samples. Yield strengths were 6.6 ± 1.2 MPa for lattice, 14.8 ± 0.7 MPa for gyroid, and 17.1 ± 0.6 for diamond. Average roughness ranged from 0.8 to 3 µm. Finally, we demonstrated the ability to design and print a fully porous implant with the geometry of a sheep tibia segment. Assessments of implant geometrical accuracy and mechanical performance are ongoing. Discussion. We created porous PEEK with TPMS geometries via FFF and demonstrated a positive cellular response and mechanical characteristics similar to trabecular bone. Our work offers an innovative approach for advancing point-of-care 3D printing and PSI creation


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 398 - 398
1 Apr 2004
Moon K Yeon* Y Yu** Y Lee** B Lee J
Full Access

Purpose: Using the finite element analysis, the authors analyze the effect of the articulating material properties of the total hip arthroplasty to stress and micro-motion of the proximal femur and the femoral stem. Material and methods: The head (28mm) and the acetabular component (outer diameter = 54mm, liner thickness = 11.4mm) were considered as ceramic on ceramic, cramic on polyethylene, metal on metal, metal on polyethylene and metal on metal-polyethylene. The femur was modeled with different friction coefficients according to the different contact portion of the femoral stem, which was modeled after Omni fit HA #9(Osteonics, Allendale, NJ). Non-linear contact analysis was proceeded in human with body weight 70Kg at one leg standing and stair climbing. Result: The maximal yield strength was always higher in hard-hard coupling. In one leg standing, the site of maximal yield strength was represented at the contact point of articulation. In stair climbing, the site of maximal yield strength was represented at the same site in hand on hard coupling but at the lateral aspect of the neck in hard-soft couplings. There were no changes in the patterns of stress distribution but the micro-motions were up to the limit of bone in growth in hard-hard coouplings. Conclusion: The maximal yield strength and the micro-motions revealed different values according to the articulating materials. These findings were considered valuable information to postoperative management and longavity of the total hip prosthesis but requiring the following experimental and clinical study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1). Results. Upon FEA validation of the scaffold in Abaqus, the desired scaffold for hip implant application was evaluated to have a young's modules of 12.15 GPa, yield strength of 242 MPa and porosity of 55%. Topology and lattice optimization were performed using nTopology to design an optimised graded porous hip implant based on stress shielding reduction. It was understood that the designed optimised hip implant can reduce the stress shielding effect by more than 65% when compared to the conventional generic implant. Conclusions. The designed hip implant presented in this work shows clinical promise in reducing bone loss while having enhanced osseointegration with the surrounding cortical bones. Hence, this will help reduce the risk of periprosthetic fracture and the probability of revision surgery


Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2021
Pareatumbee P Yew A Koh JSB Howe TS Abidin SZ Tan MH
Full Access

Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A comparative analysis against literature was performed to validate the intact model. Statistical analysis of the peak von Mises stress values collected from predicted stress contour plots was performed using a one-way repeated measure of analysis of variance (with a Bonferroni post hoc test) using SPSS Statistics 26. The average change in stress of the resected models from the intact state were then determined. Results. The validation of the intact humerus displayed a good agreement with literature values. The peak bone stress occurred distally above the coronoid and olecranon fossa closer to the load application region in the intact and resected bone models with a significant amount of loading borne by the cortical bone, while the peak implant stress occurred at the bone-prosthesis contact interface under both loading conditions. Based on the results obtained, a statistically significant difference (p =.013) in implant stress was only seen to occur between groups B and C under tension. Results illustrate initiation of stress shielding with the bone bearing lesser stress with increasing resection length which may eventually lead to implant failure by causing bone resorption according to Wolff's law. The peak implant stress under torsion was 3–5 times the stress under tension. The best biomechanical behaviour was exhibited in Group D, having the least average change in stress from the intact model, 5% and 3.8% under tension and torsion respectively. It can be deduced that the shorter the prosthesis length, the more pronounced the effect on cortical bone remodelling. With the maximum bone and implant stresses obtained being less than their yield strength, it can be concluded that the bone-implant construct is safe from failure. Conclusions. The developed FE models verified the influence of varying the prosthesis length on the bone and implant stresses and predicted signs of stress shielding in longer endoprostheses. By allowing for 2 cm shortening in the upper extremity and post-surgical scarring, it is beneficial to err towards a shorter endoprosthesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2021
Imwinkelried T Heuberger R Eggli S
Full Access

Introduction and Objective. Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage. Materials and Methods. Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent compression test. The tribological behaviour was investigated in protein containing liquid using fresh cartilage pins (Ø5 mm) sliding against a UHMWPE disc with or without a notch to simulate the gap between the implant and the surrounding cartilage. Friction coefficients were determined in a rotation tribometer and the cartilage wear in a multidirectional six-station tribometer from AMTI (load 10 – 50 N, sliding speed 20 mm/s, 37 °C). Results. UHMWPE could be infiltrated into titanium foam by 1.1 – 1.3 mm with fine pores and by 1.5 – 1.8 mm with coarse pores. The infiltration was neither dependent on the type of UHMWPE (powder or bulk) nor on the temperature. The polymer was so well anchored inside the titanium foam pores that the shear forces for the compounds exceeded the shear strength obtained for a UHMWPE-cylinder. This effect was due to the increased stiffness of the compound plug. Uniaxial compression of the titanium foams after the shear-off of the polymer revealed yield strengths ranging from 50 – 88 MPa for porosities of 62 – 73%. The Ø16 mm samples yielded beyond physiological loads in the knee (≥ 10x body weight) and behaved in a strain hardening and fully ductile manner, reaching deformations of at least 50 % of their initial height without the appearance of macroscopically visible cracks. For smaller plug diameters down to Ø8 mm, however, the lower porosity / higher strength foam should be used to limit elastic deformation of the compound to < 0.1 mm. Pore size did not significantly influence the strength and stiffness values. The elevated coefficient of friction between cartilage and UHMWPE of about 1 was not negatively affected by the presence of the gap. The height loss of the cartilage pin after 1 hour (respectively after 3600 reciproque wear cycles) was 0.2 ± 0.1 mm using a flat disc. For discs with a 1 mm wide V-notch, the wear increased to 0.9 ± 0.3 mm. Conclusions. The tested titanium foams are well suited to act as an anchoring material in the subchondral bone as mechanical properties can be tailored by choosing the adequate porosity and as bone ingrowth has previously been demonstrated for the used pore sizes. UHMWPE is not an ideal gliding partner against cartilage because the friction coefficients of frictions were high. The presence of a V-notched gap was detrimental for cartilage wear. More hydrophilic polymers like PCU should be tested as potential gliding materials


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 110 - 110
1 Mar 2021
Pavanram P Li Y Zhou J Kubo Y Lietaert K Leeflang M Fockaert L Pouran B Mol J Weinans H Zadpoor A Jahr H
Full Access

As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal bone substitute should provide sufficient mechanical support, but pure Zn itself is not strong enough for load-bearing medical applications. Modern processing techniques, like additive manufacturing (AM), can improve mechanical strength of Zn. To better mimic the in vivo situation in the human body, we evaluated the degradation behavior of porous Zn implants in vitro under dynamic conditions. Our study applied selective laser melting (SLM) to build topographically ordered absorbable Zn implants with superior mechanical properties. Specimens were fabricated from pure Zn powder using SLM and diamond unit cell topological design. In vitro degradation was performed under both static and dynamic conditions in a custom-built set-up under cell culture conditions (37 °C, 20% O2 and 5% CO2) for up to 28 days. Mechanical properties of the porous structures were determined according to ISO 13314: 2011 at different immersion time points. Modified ISO 10993 standards were used to evaluate biocompatibility through direct cell seeding and indirect extract-based cytotoxicity tests (MTS assay, Promega) against identically designed porous titanium (Ti-6Al-4V) specimens as reference material. Twenty-four hours after cell seeding, its efficacy was evaluated by Live-Dead staining (Abcam) and further analyzed using dual channel fluorescent optical imaging (FOI) and subsequent flow cytometric quantification. Porous Zn implants were successfully produced by means of SLM with a yield strength and Young's modulus in the range of 3.9–9.6 MPa and 265–570 MPa, respectively. Dynamic flow significantly increased the degradation rate of AM porous Zn after 28 days. Results from Zn extracts were similar to Ti-6Al-4V with >95% of cellular activity at all tested time points, confirming level 0 cytotoxicity (i.e., This study clearly shows the great potential of AM porous Zn as a bone substituting material. Moreover, we demonstrate that complex topological design permits control of mechanical properties and degradation behavior


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups. Methods. 7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density. Results. Axial modulus was 1.5 times greater than the two transverse directions (p<0.001), between which no difference was found. For all test directions, differences were quantified for density and modulus across all subchondral depths (p<0.001). 60% of transverse modulus variation was explained by density within subgroups for each subchondral depth. Medial axial modulus was 1.3 times greater than the lateral side (p = 0.011). Lateral axial modulus halved over a 25mm depth whilst remaining constant for the medial side. Density explained 75% of variation when grouped by subchondral depth and condyle. Yield strength was well predicted across all test directions, with density explaining 81% of axial strength variation and no differences over subchondral depth. Conclusions. The quantification of bone multiaxial modulus based on condyle and subchondral depth has been shown for the first time in a clinically viable protocol using conventional CT. Accounting for spatial variation improves upon literature property prediction models. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 125 - 125
1 Mar 2017
Zhou C Sethi K Willing R
Full Access

Transforaminal lumbar interbody fusion (TLIF) using an implanted cage is the gold standard surgical treatment for disc diseases such as disc collapse and spinal cord compression, when more conservative medical therapy fails. Titanium (Ti) alloys are widely used implant materials due to their superior biocompatibility and corrosion resistance. A new Ti-6Al-4V TLIF cage concept featuring an I-beam cross-section was recently proposed, with the intent to allow bone graft to be introduced secondary to cage implantation. In designing this cage, we desire a clear pathway for bone graft to be injected into the implant, and perfused into the surrounding intervertebral space as much as possible. Therefore, we have employed shape optimization to maximize this pathway, subject to maintaining stresses below the thresholds for fatigue or yielding. The TLIF I-beam cage (Fig. 1(a)) with an irregular shape was parametrically designed considering a lumbar lordotic angle of 10°, and an insertion angle of 45° through the left or right Kambin's triangles with respect to the sagittal plane. The overall cage dimensions of 30 mm in length, 11 mm in width and 13 mm in height were chosen based on the dimensions of other commercially available cages. The lengths (la, lp) and widths (wa, wp) of the anterior and posterior beams determine the sizes of the cage's middle and posterior windows for bone graft injection and perfusion, so they were considered as the design variables for shape optimization. Five dynamic tests (extension/flexion bending, lateral bending, torsion, compression and shear compression, as shown in Fig. 2(b)) for assessing long term cage durability (10. 7. cycles), as described in ASTM F2077, were simulated in ANSYS 15.0. The multiaxial stress state in the cage was converted to an equivalent uniaxial stress state using the Manson-Mcknight approach, in order to test the cage based on uniaxial fatigue testing data of Ti-6Al-4V. A fatigue factor (K) and a critical stress (σcr) was introduced by slightly modifying Goodman's equation and von Mises yield criterion, such that a cage design within the safety design region on a Haigh diagram (Fig. 2) must satisfy K ≤ 1 and σcr ≤ SY = 875 MPa (Ti-6Al-4V yield strength) simultaneously. After shape optimization, a final design with la = 2.30 mm, lp = 4.33 mm, wa = 1.20 mm, wp = 2.50 mm, was converged upon, which maximized the sizes of the cage's windows, as well as satisfying the fatigue and yield strength requirements. In terms of the strength of the optimal cage design, the fatigue factor (K) under dynamic torsion approaches 1 and the critical stress (σcr) under dynamic lateral bending approaches the yield strength (SY = 875 MPa), indicating that these two loading scenarios are the most dangerous (Table 1). Future work should further validate whether or not the resulting cage design has reached the true global optimum in the feasible design space. Experimental validation of the candidate TLIF I-beam cage design will be a future focus. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 86 - 86
1 Jan 2016
Uetsuki K Osaka Y Tomita N
Full Access

Introduction. Dl-α-Tocopherol (VE)-blended non-crosslinked UHMWPE has been developed as a bearing surface material for knee prostheses due to the radical scavenging capabilities of vitamin E and has demonstrated a low wear rate in knee simulator testing [1,2]. In previous our study, VE-blended, crosslinked UHMWPE has demonstrated a low wear rate in hip simulator testing [3, 4]. As the radical scavenging capabilities also reduce the crosslinking degree of the material, multiple dose crosslinking has been investigated. However, these crosslinked UHMWPE materials may have different mechanical properties, as each crosslinking process, especially the annealing condition, is different. Additionally, there is little information about VE-blended, crosslinked UHMWPE with different annealing conditions. In this study, the effect of annealing temperature was investigated with regard to tensile strength, crosslink density, and crystallinity of VE blended, crosslinked UHMWPE. Method. VE blended samples were manufactured via direct compression molding following the blending of UHMWPE resin powder (GUR1050, Ticona Inc.) with VE (dl-α-tocopherol, Eisai Co. Ltd.) at 0.3wt%. The virgin samples were derived similarly, but without the addition of VE. Both materials underwent crosslinking by irradiation via a 10MeV electron beam at 300kGy and were then heat treated at several temperatures (25, 80, 110, 130 and 150 °C) for 24 hours. Gel content, which can be interpreted as cross-link density, was determined by measuring the weight of the samples before and after soaking in decahydronaphthalene at 150 °C for twelve days. Tensile tests were carried out following JIS K 7113, with the cross head speed set at 50 mm/min. Crystallinity was determined by using DSC and integrating over the enthalpy curve from 80 to 150 °C and normalizing with the enthalpy of melting for 100% crystalline polyethylene. Result. Fig. 1 shows the gel content of UHMWPE samples after crosslinking. Raising the annealing temperature caused an increase in the gel content regardless the VE content. Additionally, among samples with the same annealing temperature, VE samples had the lower gel content. Fig. 2 shows the yield strength of UHMWPE samples. Higher annealing temperature decreased the yield strength, and increased elongation. Fig. 3 shows the crystallinity of each UHMWPE sample. Higher annealing temperature decreased the crystallinity of UHMWPE. Discussion. In this study, the effect of annealing temperature on the mechanical properties of crosslinked UHMWPE was investigated. The results indicated that a greater volume of crystalline UHMWPE melted and reformed at the higher annealing temperatures. This was thought to occur due to the fact that UHMWPE consists of a range of different molecular weight chains, allowing for melting below 135°C. Therefore, the crystallinity and crosslink density changed for each annealing temperature. The annealing is a simple but effective method for designing the crystallinity and crosslinking of UHMWPE


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 84 - 84
1 Jul 2020
Chow D Qin L Wang J Yang K Wan P
Full Access

Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins. Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm, stainless steel, Mg, or MAO-Mg) was inserted into the tunnel. The reduced construct was stabilized with a figure-of-eight band wire (⊘ 0.6 mm stainless steel wire). Cast immobilization was applied for 6 weeks. The rabbits were euthanized at week 8 and 12 post-operation. Microarchitecture and mechanical properties of the repaired patella were analyzed with microCT and tensile testing respectively. Histological sections of the repaired patella were stained. To evaluate the effect of the MAO treatment on degradation rate of Mg pin, the volume of the Mg pins in the patella was measured with microCT. At week 8, both Mg and Mg-MAO showed higher ratio of bone volume to tissue volume (BV/TV) than the control while there was no significant different between Mg and Mg-MAO. At week 12, Control, Mg, and Mg-MAO groups showed enlarged patella when compared to the normal patella. Tissue volume (TV) and bone volume (BV) of the patella in Mg and Mg-MAO were larger than those in the Control group. However, the Control had higher ratio of bone volume to tissue volume (BV/TV), TV density, and BV density than Mg and Mg-MAO. Tensile testing showed that the mechanical properties of the repaired patella (failure load, stiffness, ultimate strength, and energy-to-failure) of Mg and Mg-MAO were higher than that of the control at both week 8 and week 12. Histological analysis showed that there was significant new bone formation in the Mg and Mg-MAO group compared with the Control group at week 8 and 12. The degradation rate of the MAO-coated Mg pins was significantly slower than those without MAO at week 8 but no significant difference was detected at week 12. Mechanical, microarchitectural, and histological assessments showed that Mg pins, with or without MAO, enhanced fracture healing of the repaired patella compared to the Control. MAO treatment enhanced the corrosion resistance of the Mg pins at the early time point


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 429 - 429
1 Dec 2013
Mitchell B
Full Access

Additive manufacturing (AM) techniques have gained attraction in orthopedic implant design with their ability to create unique shapes and structures. Depending on the application, there are different mechanical properties required. This study evaluated the mechanical properties of direct metal laser sintered (DMLS) Titanium alloy (Ti6Al4V) with and without hot isostatic pressure (HIP) treatment. Three dimensional computer modeling and the DMLS manufacturing assisted in building net or near-net samples for testing. The material testing consisted of uniaxial tension, Charpy impact, rotating beam fatigue (RBF), density, and hardness. Two sets of Ti6Al4V samples were created for testing using a DMLS process and stress relieved in a vacuum furnace prior to removal from the build platform. One set of samples were HIP treated. The two sets of samples were tested and the material properties of the non-HIP treated samples were compared to those with HIP treatment. Tension testing was conducted on fifteen (15) samples per treatment according to ASTM E8/E8M on as-built samples designed to a round specimen 3 per the standard. Fifteen (15) Charpy impact samples per treatment were built to near-net shapes. A low stress grind was performed on all surfaces and a notch was placed in the sample to comply with ASTM E23 and testing was performed in accordance with the standard. Fifteen (15) samples were built per treatment and machined for RBF per ISO 1143. RBF was performed on all samples at a frequency of 100 Hz with run out conditions of 10M cycles or failure. Density and hardness was measured on three (3) samples from each set using Archimedes' Principle and Rockwell hardness techniques respectively. The average (standard deviation) tensile strengths between the two groups were statistically different (p < 0.05). The non-HIP treated samples had an average ultimate strength of 956(10) MPa, yield strength of 896(13) MPa, and modulus of 118(2) GPa (Table 1). The HIP treated samples had an average ultimate strength of 909(4) MPa, yield strength of 832(9) MPa, and modulus of 112(3) GPa (Table 1). There was also statistical differences in the impact strength with the HIP treatment samples having a higher required force of 23.4(1.6) J compared to the non-HIP treated group of 19.8(1.8) J (Table 1). The fatigue strength of the samples HIP treated compared to the non-HIP treated group was 650 MPa and 396 MPa respectively (Table 1). This study shows that the HIP treatment of DMLS Ti6Al4V diminishes some mechanical strengths while greatly improving the fatigue life of the material. As we continue to evaluate these “new” materials for orthopedic devices, these mechanical and physical properties will help us understand the capabilities of this process and material


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 142 - 142
1 Sep 2012
Traynor A Simpson D Ellison P Collins S
Full Access

Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional UHMWPE, HXLPE and ECIMA. Methods. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three conventional UHMWPE liners (GUR1050, Ø32 mm, 30 kGy sterilised in Nitrogen), three HXLPE liners (GUR1020, Ø40 mm, 75 kGy cross-linking and EtO sterilised) and six ECIMA liners (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy cross-linking, mechanically deformed and annealed, and EtO sterilised) articulated against CoCrMo alloy femoral heads to ASTM F75 (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, with a maximum force of 3.0 kN and at a frequency of 1 Hz. The test lubricant used was calf serum with a protein content of 30 g/l and 1% (v/v) patricin added as an antibacterial agent. Volumetric wear rate was determined gravimetrically after the first 0.5 mc and every 1 mc thereafter. ASTM D638 type V specimens (3.2 mm thick) were machined from ECIMA material for uniaxial tension testing to ASTM D638. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Results. There was a 94% and a 68% reduction in the wear rate for the ECIMA liners compared to the conventional UHMWPE and HXLPE liners respectively. There was an increase in UTS, yield strength and elongation of 11%, 11% and 15% respectively, for ECIMA compared to HXLPE. Discussion. The wear results reported in this study indicate that ECIMA is a very low wearing material which has the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to conventional UHMWPE than HXLPE. The reduced wear rate during in-vitro hip simulation of ECIMA compared to conventional UHMWPE, coupled with improved mechanical properties in comparison to HXLPE, makes ECIMA a promising next generation, advanced bearing material


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 90 - 90
1 Feb 2020
Haeussler K Pandorf T
Full Access

Introduction. Lipped liners have the potential to decrease the rate of revision for instability after total hip replacement since they increase the jumping distance in the direction of the lip. However, the elevated lip also may reduce the Range of Motion and may lead to early impingement of the femoral stem on the liner. It is unclear whether the use of a lipped liner has an impact on the level of lever-out moments or the contact stresses. Therefore, the aim of the current study was to calculate these values for lipped liners and compare these results to a conventional liner geometry. Materials and Methods. 3D Finite Element studies were conducted comparing a ceramic lipped liner prototype and a ceramic conventional liner both made from BIOLOX. ®. delta. The bearing diameter was 36 mm. To apply loading, a test taper made of titanium alloy was bonded to a femoral head, also made from BIOLOX. ®. delta. Titanium was modeled with a bilinear isotropic hardening law. For the bearing contact a coefficient of friction of both 0.09 or 0.3 was assumed to model a well and poorly lubricated system. Frictionless contact was modeled between taper and liner. Pre-load was varied between 500 N and 1500 N and applied along the taper axis. While keeping pre-load constant, lever-out force was applied perpendicular to the taper axis until subluxation occurred. Liners were fixed at the taper region. Lever-out moment, equivalent plastic strain and von Mises stress of the taper, bearing contact area and contact area between taper and liner was evaluated. Results. With increasing pre-load, larger lever-out moment, equivalent plastic strain, contact area between taper and liner and bearing contact area was found for both liner designs. However, von Mises stresses were nearly constant but slightly exceeded yield strength of titanium. For all evaluated parameters almost no differences were found between the liner designs. Lever-out moments were comparable for both designs ranging from 4.5–10.5 Nm for the lipped liner and 4.4–10.2 Nm for the conventional liner. The increase of the coefficient of friction strongly affected lever-out moments, equivalent plastic strain and contact area between taper and liner. The other parameters were not affected by varying the coefficient of friction. Discussion. This study did not find significant differences in the lever-out behavior of the lipped acetabular liner compared to the conventional liner design. The inner geometry of the lipped liner is comparable to the conventional liner inner geometry. Therefore, contact area showed no significant differences and contact mechanics are identical in the current setup leading to similar results of both liner designs. For both designs small plastic deformations in the contact point of the taper were found at the contact region between liner and taper. However, the investigated mechanical parameters did not differ between the two investigated liner types. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 80 - 80
1 Feb 2020
Robotti P Luchin V Galeotti F Molinari A
Full Access

AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing. Specimens were manufactured in Ti6Al4V using a SLM machine. Struts sizes had nominal diameters of 200µm or 100µm, pores had nominal diameters of 700µm, 1000µm or 1500µm. These dimensions were applied to three different open-cell geometrical configurations: one with unit-cells based on a regular cubic arrangement (Regular), one with a deformed cubic arrangement (Irregular), and one based on a fully random arrangement (Fully Random). Morphological analysis was performed by image analysis applied onto optical and SEM acquired pictures. The analyses estimated the maximum and minimum Feret pores diameter, and the latter was used as one of the key parameters to describe the interconnected network of pores intended for bone colonization. Outcome revealed the systematic oversizing of the actual struts diameter Vs designed diameter; by opposite min. Feret diameters of the pores resulted significantly smaller than nominal pore diameters, thus better fitting within the range of pores dimension acknowledged to favor the osseointegration. Consequently, the actual total porosity is also reduced. Many technologic factors are responsible for the morphologic differences design vs actual, among these the influence of melting pool dimension, the struts orientation during building and the layer thickness have a significant impact. Mechanical compression was performed on porous cylinder samples. Test revealed the Yield Strength and Stiffness are highly sensitive to the actual porosity. Deformation behavior follows densification phenomenon at lower porosity, whereas at higher porosity the Gibson-Ashby model fits for most of the structure tested. The relationship among load direction, struts alignment and the collapse behavior of the unit cell geometries are discussed. Stiffness of the porous structure is evaluated in both quasistatic and cyclic compression. Wear was investigated according to Taber test method. The abrasion resistance is measured by scratching a ceramic wheel against the different AM porous structures along a circular path. Metal debris eventually loss were quantified by gravimetric analysis at different number of cycles. Correlation among AM porous structure geometry, porosity and wear loss is discussed. All the tested structures showed a debris loss within the limit suggested by FDA for the porous coating in contact with the bone tissue. The actual AM porous Titanium unit cell geometry and features are a key design input. In combination with all the other design factors of a device they may result helpful in address the stress shielding and prevent metal debris release issues. The study underlines the importance of the research activity in AM to support Design for Additive Manufacturing (DFAM) capability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 392 - 392
1 Jul 2008
Pollintine P Cooper I Anderson H Green L Cooper C Lanham S Oreffo R Dolan P
Full Access

Introduction: Epidemiology suggests that an intrauterine nutrient restriction increases the likelihood of osteoporosis in later life, possibly due to differences in bone structure and strength. We hypothesise that, in an ovine model, early nutritional compromise reduces vertebral cancellous bone density and cortical thickness, and thereby reduces vertebral compressive strength. Materials and methods: Lumbar spines were dissected from 8 sheep (6 male, 2 female: mean age 2.7 yrs). Spines were divided into different groups, based on the early diet of the sheep: group CC received a control diet, group IU received low protein in utero, and group PN received low protein both in utero and postnatally. Fifteen motion segments (consisting of two vertebrae and the intervening disc and ligaments) were prepared from the spines, and compressed to failure using a hydraulically-controlled materials testing machine to obtain yield strength. 1mm-thick bone slices were taken from the mid-sagittal and para-sagittal regions of each vertebral body and micro-radiographed. Digital images of the micro-radiographs were analysed to obtain the cancellous bone density in anterior and posterior regions, and the cortical thickness in the anterior, posterior, superior and inferior regions. Repeated measures ANOVA was used to test for differences in parameters at the different locations, and between the groups. Results: The anterior cortex was 28% thinner for the IU group, and 23% thinner for the PN group compared to controls (both p< 0.001). In the PN group, the superior cortex was also 18% thinner than controls (p< 0.02). There was no significant difference between cancellous bone density in either region. Yield strength was 16% lower in the IU group compared to controls, but this did not reach significance. Discussion: In the nutritionally compromised groups, cortical thickness was lower in regions of the vertebral body where fractures often occur in elderly people. However, the reduction in cortical thickness is not accompanied by a significant reduction in compressive strength in the sheep model. These findings suggest that the well-maintained cancellous bone protects the vertebra from fracture


Introduction. The ability to manufacture implants at the point-of-care has become a desire for clinicians wanting to provide efficient patient-specific treatment. While some hospitals have adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments with low-temperature plastics, recent innovations have allowed for the printing of high-temperature polymers such as polyetheretherketone (PEEK). Due to its low modulus of elasticity, high yield strength, and radiolucency, PEEK is an attractive biomaterial for implantable devices. Though concerns exist regarding PEEK for orthopaedic implants due to its bioinertness, the creation of porous networks has shown promising results for bone ingrowth. In this study, we endeavor to manufacture porous PEEK constructs via clinically-used FFF. We assess the effect of porous geometry on cell response and hypothesize that porous PEEK will exhibit greater preosteoblast viability and activity compared to solid PEEK. The work represents an innovative approach to advancing point-of-care 3D printing, cementless fixation for total joint arthroplasty, and additional applications typically reserved for porous metal. Methods. Three porous constructs – a rectilinear pattern and two triply period minimal surface (TPMSs) - were designed to mimic the morphology of trabecular bone. The structures, along with solid PEEK samples for use as a control, were manufactured via FFF using PEEK. The samples were mCT scanned to determine the resulting pore size and porosity. The PEEK constructs were then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated at each time point, and the samples were imaged via SEM. Results. mCT imaging showed the pores in the PEEK constructs to be open and interconnected. The average pore size was 535 ± 92 µm for the rectilinear, 484 ± 237 µm for the diamond, and 669 ± 216 µm for the gyroid. Porosity was 71% for the rectilinear, 76% for the diamond, and 68% for the gyroid. The average error between the theoretical and actual values was −37.3 µm for pore size and −2.3 % for porosity. Normalized ALP activity of the three porous PEEK samples at 7 days were found to be significantly greater than the solid sample (p < 0.05 rectilinear, p < 0.005 gyroid, p < 0.001 diamond). At 14 days, the same relationships were observed (p < 0.001 for all three designs). No difference between the three geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK. The 14-day samples appeared to have proliferated well and spread along the PEEK pores. Extensions of filopodia and lamellipodia were observed along with large blankets of cells covering the PEEK surface. Discussion. We demonstrated the ability of FFF printed porous PEEK surfaces to promote cellular processes necessary for bone-implant fixation. While all porous structures showed promising results, more investigation into their material characteristics and osteogenic potential are necessary to determine which geometry may be suitable for orthopaedic use. Our work offers an innovative approach to advancing point-of-care 3D printing, cementless implant fixation, and additional applications typically reserved for porous metal


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 176 - 176
1 Sep 2012
Simpson D Traynor A Collins S
Full Access

INTRODUCTION. Wear induced osteolysis, material property degradation and oxidation remain a concern in cobalt chrome on polyethylene THR. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended HXLPE developed to maintain mechanical properties, minimise wear and improve long-term oxidation resistance. This study aimed to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; UHMWPE, HXLPE and ECIMA. METHODS. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three UHMWPE (GUR1050, Ø32 mm, γ sterilised), three HXLPE (GUR1020, Ø40 mm, 75 kGy γ, EtO sterilised) and six ECIMA (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy γ, mechanically annealed, EtO sterilised) liners articulated against CoCrMo femoral heads (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, in calf serum, with a maximum force of 3.0 kN and at a frequency of 1 Hz. Volumetric wear rate was determined gravimetrically. ASTM D638 type V specimens were machined from ECIMA material for uniaxial tension testing. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Following completion of the ECIMA wear testing, three of the tested liners were cut in half. One half of each was subject to accelerated ageing in accordance with ASTM F2003-02, while the other half was tested as received. Each liner half was cross-sectioned and a microtome was used to section 200μm thick slices from each cross-section. Oxidation analysis was performed using a Fourier Transform Infra-red technique in accordance with ASTM F2102-01 throughout the thickness of each liner half. Average oxidation indices for each sample were determined. RESULTS. The reduction in wear rate for the ECIMA liners compared to the UHMWPE and HXLPE liners was 95 % and a 83 % respectively. There was an increase in UTS, yield strength and percent elongation of 45%, 16% and 32% respectively, for unaged ECIMA compared to HXLPE. Following ageing of the ECIMA samples, there was minimal change in all three mechanical properties. Importantly, the mechanical properties were not substantially degraded and were more comparable to conventional UHMWPE than HXLPE. Further to this, following an aggressive ageing protocol, the ECIMA material maintains the mechanical properties of the unaged condition. All of the oxidation values for the wear tested ECIMA liners, before and after ageing, and the aged, untested ECIMA samples were negative, which shows oxidation levels below the level of detection throughout the thickness of the samples. This indicates a high level of through-thickness oxidation resistance for the ECIMA specimens even after being subject to an aggressive ageing protocol and cyclic loading. DISCUSSION. These in-vitro wear results indicate that ECIMA is a very low wearing material with the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to UHMWPE than HXLPE. These properties make ECIMA a promising next generation bearing material