Osteolysis induced by UHMWPE debris has historically been one of the major causes of long term failure of TJR. An increase in concentration of polyethylene particles in the peri-prostheic tissue has been linked to an increased incidence of osteolysis. The dual mobility hip bearing concept mates a femoral head into a polyethylene liner which has an unconstrained articulation into a metal shell. The wear mechanism of the dual mobility hip bearing is distinct from a constrained single articulation design, which may result in a difference in
Background. Wear particles are considered to be the major culprit for the aseptic loosening. Their characterization is thus crucial for the understanding of their bioreactivity and contribution to the development of aseptic loosening. Methods. Metal
MHRA guidance for patients with metal on metal hip replacements (MOM) was provided in 2012 and updated in 2017 to assist in the early detection of soft tissue reactions due to metal
Osteoporosis following ovariectomy has been suggested to modulate bone response to polyethylene
Background. Pseudotumours have been associated with metal-on-metal (MoM) hip replacements. We define it as a solid mass which may have cystic components that is neither neoplastic nor infectious in aetiology. The cause of a pseudotumour is not fully understood but could be due to excessive wear, metal hypersensitivity or due to an as-yet unknown cause. Aim. We present the retrieval analysis of early failure MoM hips revised for pain, loosening or a symptomatic mass. Tissues and implants were examined for the possible causes of failure and pseudotumour formation. Corrosion as a potential new cause for pseudotumour formation will be presented. Methods. A group of 16 MoM hip replacements were collected for retrieval analysis. Six of which had a pseudotumour. An Artificial Hip Profiler (Redlux Ltd) was used to measure wear. Edge loading was determined using the 3D wear data. Tissues were histologically evaluated using a 10-point ALVAL scoring system, which strongly suggests hypersensitivity (1). Cases were assigned to one of three categories: high wear (rates >5m/yr), hypersensitivity or corrosion. Results. Of the 6 pseudotumours, 3 had edge loading, 2 had high ALVAL scores and one had corrosion at the head taper junction. The high wear group, (3 cases) all demonstrated edge loading. Histology revealed more metal wear particles and macrophages, with a low ALVAL score in these cases. Two cases were found to have hypersensitivity with a high ALVAL score, more lymphocytes with less visible
Introduction. The MITCH PCR is an anatomic, flexible, horse-shoe shaped acetabular component, with 2 polar fins. The rationale of the PCR cup design is to reproduce a near-physiological stress distribution in the bone adjacent to the prosthesis. The thin composite cup is designed to fuse and flex in harmony with the surrounding bony structure. Only the pathological acetabular cartilage and underlying subchondral bone of the horseshoe-shaped, load-bearing portion of the acetabular socket is replaced, thus preserving viable bone stock. The PCR is manufactured from injection moulded carbon fibre reinforced polyetheretherketone (PEEK), with a two layer outer surface comprising hydroxyapatite and plasma sprayed commercially pure titanium. It is implanted in conjunction with a large diameter low wear femoral head, producing a bearing that will generate minimal
Introduction. The advantages of metal on metal (MOM) hip replacement are decreased wear rate, preservation of bone stock, anatomical restoration and enhanced stability. Large amounts of metal wear particles and metal ions are released which may induce adverse reactions including local soft tissue toxicity, hypersensitivity reactions, bone loss and risk of carcinogenesis. Aseptic loosening can be the result of a peri prosthetic osteolysis generated as a result of a biological response to particulate
INTRODUCTION. The advantages of large diameter metal on metal total hip arthroplasty (MoM THA) and hip resurfacing arthroplasty are decreased wear rate, preservation of bone stock, anatomical restoration and enhanced stability. Large amounts of metal wear particles and metal ions are released which may induce adverse reactions including local soft tissue toxicity, hypersensitivity reactions, bone loss and risk of carcinogenesis. Aseptic loosening can be the result of a peri-prosthetic osteolysis generated as a result of a biological response to particulate
Introduction. In total hip arthroplasty ceramic on ceramic bearing couples are used more and more frequently and on a wordwide basis. The main reason of this choice is reduction of
The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by
Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE)