Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1455 - 1462
1 Nov 2018
Munro JT Millar JS Fernandez JW Walker CG Howie DW Shim VB

Aims. Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA. Patients and Methods. A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured. Results. The von Mises stresses were increased in models of those with and those without defects for both loading scenarios. Although some regions showed increases in stress values of up to 100%, there was only a moderate 11.2% increase in von Mises stress in the series as a whole. The site of fracture changed in some models with lowering of the load to fracture by 500 N. The most common site of fracture was the pubic ramus. This was more frequent in models with larger defects. Conclusion. We conclude that cancellous defects cause increases in stress within cortical structures. However, these are likely to lead to a modest decrease in the load to fracture if the defect is large (> 20cm. 3. ) or if the patient is small with thin cortical structures and low bone mineral density. Cite this article: Bone Joint J 2018;100-B:1455–62


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 66 - 66
23 Jun 2023
Chosa E Zhao X
Full Access

Finite element analysis (FEA) has been applied for the biomechanical analysis of acetabular dysplasia, but not for biomechanical studies of periacetabular osteotomy (PAO) or those performing analysis taking into consideration the severity of acetabular dysplasia. This study aimed to perform biomechanical evaluation of changes in stress distribution following PAO and to determine the effect of the severity of developmental dysplasia of the hip (DDH) using three-dimensional FEA. A normal model was designed with a 25° center-edge (CE) angle and a 25° vertical-center-anterior margin (VCA) angle. DDH models were designed with CE and VCA angles each of 10, 0, or −10°. Post-PAO models were created by separating each DDH model and rotating the acetabular bone fragment in the anterolateral direction so that the femoral head was covered by the acetabular bone fragment, with CE and VCA angles each at 25°. Compared to the normal hip joint model, the DDH models showed stress concentration in the acetabular edge and contacting femoral head, and higher stress values; stress increased with decreasing CE and VCA angles. Compared to the DDH models, the post-PAO models showed near-normal patterns of stress distribution in the acetabulum and femoral head, with stress concentration areas shifted from the lateral to medial sides. Stress dispersion was especially apparent in the severe acetabular dysplasia models. PAO provided greater decreases in the maximum values of von Mises stress in the load-bearing area of the acetabulum and femoral head when applied to the DDH models of higher degrees of severity, although the values increased with increasing severity of DDH. PAO is expected to provide biomechanical improvement of the hip joint, although the results also suggest a limitation in the applicability of PAO for the patients with severe acetabular dysplasia


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 40 - 40
1 May 2018
Del-Valle-Mojica J Alonso-Rasgado T Bailey C Jimenez-Cruz D Board T
Full Access

Introduction. The use of larger femoral heads in Total Hip Arthroplasty has increased in order to reduce the risk of dislocation and to improve the range of motion of the joint. In 2003, within the UK, the “standard” head size of 28mm was used in 73% of all hip procedures, whereas by 2012, this figure dropped to 36%. Concerns regarding the impact of this increment in head size on the cement and bone stresses have arisen; however, this has yet to be clearly determined. Methods. To understand the relationship between femoral head size and cement mantle and bone stress in cemented hip arthroplasty, 3D-Finite-Element models of a hemipelvis with cemented cup[tb6] (50mm outer-diameter) were developed. Loading conditions of single-leg-stance (average and overweight) were simulated for three head sizes (28, 32 and 36mm). The models were validated with an in-vitro experiment using the average loading condition. Results. Stresses were evaluated at the periacetabular bone and cement mantle. In the pelvic bone the peak von Mises stress value presented no change in magnitude due to change in head size for the average patient; for the overweight patient, there was a small increment. In the cement mantle, there was a noticeable difference in the pattern distribution and magnitude of the stresses for the two loading conditions[tb7]. For the average patient, average stresses in the cement were 1.7MPa, 1.8MPa and 1.9MPa for 28, 32 and 36mm heads, respectively; whereas for the overweight patient the stresses were 3.4MPa, 3.6MPa and 3.8MPa. Conclusions. Pelvic bone remained largely unaffected by the changes in femoral head size. The major effect of femoral head size occurs in the stress level and stress distribution pattern in the cement mantle. The current predicted cement stresses are below the cement endurance limit, this indicates that the cement fatigue life is not affected by the increasing head size


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims

Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems.

Methods

We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives

In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes.

Patients and Methods

We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives

Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection.

Materials and Methods

Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences.