Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 39 - 39
1 Aug 2020
Ma C Li C Jin Y Lu WW
Full Access

To explore a novel machine learning model to evaluate the vertebral fracture risk using Decision Tree model and train the model by Bone Mineral Density (BMD) of different compartments of vertebral body. We collected a Computed Tomography image dataset, including 10 patients with osteoporotic fracture and 10 patients without osteoporotic fracture. 40 non-fracture Vertebral bodies from T11 to L5 were segmented from 10 patients with osteoporotic fracture in the CT database and 53 non-fracture Vertebral bodies from T11 to L5 were segmented from 10 patients without osteoporotic fracture in the CT database. Based on the biomechanical properties, 93 vertebral bodies were further segmented into 11 compartments: eight trabecular bone, cortical shell, top and bottom endplate. BMD of these 11 compartments was calculated based on the HU value in CT images. Decision tree model was used to build fracture prediction model, and Support Vector Machine was built as a compared model. All BMD data was shuffled to a random order. 70% of data was used as training data, and 30% left was used as test data. Then, training prediction accuracy and testing prediction accuracy were calculated separately in the two models. The training accuracy of Decision Tree model is 100% and testing accuracy is 92.14% after trained by BMD data of 11 compartments of the vertebral body. The type I error is 7.14% and type II error is 0%. The training accuracy of Support Vector Machine model is 100% and the testing accuracy is 78.57%. The type I error is 17.86% and type II error is 3.57%. The performance of vertebral body fracture prediction using Decision Tree is significantly higher than using Support Vector Machine. The Decision Tree model is a potential risk assessment method for clinical application. The pilot evidence showed that Decision Tree prediction model overcomes the overfitting drawback of Support Vector Machine Model. However, larger dataset and cohort study should be conducted for further evidence


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 32 - 32
1 Nov 2022
Bernard J Bishop T Herzog J Haleem S Ajayi B Lui D
Full Access

Abstract. Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis allowing correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. A retrospective analysis of 20 patients (M:F=19:1 – 9–17 years) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated upon. VBT-GM mean age −12.5 years (9 to 14), mean Risser of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) and mean Risser of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40°–58°) compared to VBT-ASC 56.5° (40°–79°). Postoperative VBT-GM Cobb was 20.3° and VBT-ASC was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. Latest Cobb angle at mean five years' follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Overall, 5% of patients required fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for scoliosis correction in the skeletally immature patient. This is the first report at five years showing two possible options of VBT depending on the skeletal maturity of the patient: GM and ASC


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 25 - 25
1 Sep 2012
Yang Z Lowe A De la Harpe D Richardson M
Full Access

To identify factors that predict poor patient-reported outcomes in patients with traumatic vertebral body fracture(s) of the thoracic and/or lumbar spine without neurological deficit. There is a paucity of information on factors that predict poor patient-reported outcomes in patients with traumatic vertebral body fracture(s) of the thoracic and/or lumbar spine without neurological deficit. Patients were identified from the Victorian Orthopaedic Trauma Outcomes Registry (VOTOR). VOTOR includes all patients with orthopaedic trauma admitted to the two adult Level 1 trauma centres in Victoria, Australia. Patient-reported outcomes and data on possible predictive factors, including demographic details, injury-related and treatment-based factors, were obtained from the VOTOR database. Patient-reported outcomes were measured at 12 months post-injury using the 12-Item Short-Form Health Survey (SF-12), a Numerical Rating Scale (NRS) for pain, global outcome questions and data was collected on return to work or study. For the identification of predictive factors, univariate analyses of outcome vs. each predictor were carried out first, followed by logistic multiple regression. 344 patients were eligible for the study and data were obtained for 264 (76.7%) patients at 12 months follow-up. Patients reported ongoing pain at 12 months post-injury (moderate–severe: 33.5%), disability (70.1%) and inability to return to work or study (23.3%). A number of demographic, injury-related and treatment-based factors were identified as being predictive of poor patient-reported outcomes. Patients who had associated radius fracture(s) were more likely to have moderate to severe disability (odds ratio (OR) = 3.85, 95% confidence interval = 1.30–11.39), a poorer physical health status (OR = 3.73, 1.37–10.12) and moderate to severe pain (OR = 3.23, 1.22–8.56) at 12 months post-injury than patients without radius fracture. Patients who did not receive compensation for work-related or road traffic-related injuries were less likely to report moderate to severe pain (OR = 0.45, 0.23–0.90) or have a poorer mental health status (OR = 0.17, 0.04–0.70) at 12 months post-injury than those who received compensation. The prognostic factors identified in this study may assist clinicians in the identification of patients requiring more intensive follow-up or additional rehabilitation to ultimately improve patient care


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 19 - 19
1 Mar 2012
Van Meirhaeghe J Wardlaw D Bastian L Cummings S Boonen S
Full Access

Background. Vertebral body compression fractures (VCFs) impair quality of life (QOL) and increase patient morbidity and mortality. The international, multicentre, randomised, controlled Fracture Reduction Evaluation (FREE) trial was initiated to compare effectiveness and safety of Balloon kyphoplasty (BKP) to non-surgical management (NSM) for the treatment of acute painful VCFs. We describe the primary endpoint of the ongoing 2-year study. Methods. Patients with 1-3 non-traumatic VCFs (< 3 months old) were randomised to either BKP or NSM. The primary endpoint was the change in QOL as measured by the SF-36 Health Survey Physical Component Summary (PCS) at one month, and device/procedure-related safety. Secondary endpoints included SF-36 subscales, the EQ-5D, self-reported back pain and function using the Roland Morris Disability Questionnaire (RMDQ). All patients were given osteoporosis medical therapy. Results. Among the BKP (N=149) and NSM (N=151) cohorts, mean patient age was 73 years and 77% were female. Most patients had VCFs due to primary osteoporosis; 8 patients due to corticosteroid-induced osteoporosis, and 4 had cancer-related fractures. Thirty-nine BKP (26%) and 36 NSM (24%) patients had >1 VCF treated. At one month follow-up, the mean improvement in the PCS was in favour of BKP over NSM (p<0.0001). All physical component SF-36 subscales and the total EQ-5D score were significantly improved for BKP compared to NSM. Mean improvements in back pain at 7 days and 1 month were significantly greater for BKP compared to NSM (p<0.0001 at both time points). The improvement in RMDQ for BKP over NSM was also significant (p<0.0001). There was one soft tissue haematoma and urinary tract infection, with no bone cement-related serious adverse events. Conclusions. Compared to non-surgical management, balloon kyphoplasty demonstrated superior short-term pain, function and quality of life outcomes with no difference in serious adverse events for the treatment of acute, painful vertebral compression fractures. (Clinical trials.gov number, NCT00211211)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 42 - 42
23 Feb 2023
Bekhit P Ou C Baker J
Full Access

Sarcopenia has been observed to be a predictor of mortality in international studies of patients with metastatic disease of the spine. This study aimed to validate sarcopenia as a prognostic tool in a New Zealand setting. A secondary aim of this study was to assess the intra-observer reliability of measurements of psoas and vertebral body cross sectional areas on computed tomography imaging. A cohort of patients who had presented to Waikato Hospital with secondary neoplasia in the spinal column from 2014 to 2018 was selected. Cross sectional psoas and vertebral body areas were measured at the mid-pedicle L3 level, followed by calculation of the psoas to vertebral body cross sectional area ratio. Psoas to vertebral body cross sectional area ratio was compared with survivorship. The strength of the correlation between sarcopenia and survivorship was compared with the correlation between serum albumin and survivorship, as well as the correlation between the Metastatic Spine Risk Index (MSRI) and survivorship. A total of 110 patients who received operative (34) and non-operative (76) were included. The results demonstrate that psoas to vertebral body cross sectional area ratio is not statistically significantly correlated with survivorship (p=0.53). Serum albumin is significantly correlated with survivorship (p<0.0001), as was the MSRI. There is good intra-observer and inter-observer reliability for measurements of psoas to vertebral body cross sectional area. This study failed to demonstrate the utility for the psoas to vertebral body cross sectional area ratio that other studies have demonstrated in estimating survivorship. Serum albumin levels remain a useful prognostic indicator in patients with secondary tumours in the vertebral column


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 92 - 92
23 Feb 2023
Lee S Lin J Lynch J Smith P
Full Access

Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications. The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5. a. ) was divided to reference 3 distinct pelvic groups. A 4. th. group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification:. A – sSIJ is above the midpoint of L5. a. B – sSIJ is between the midpoint and the lowest point of L5. a. C – sSIJ is below the lowest point of L5. a. D – pelves with a lumbosacral transitional vertebra. Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types. Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively. Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 52 - 52
1 Dec 2022
Moskven E Lasry O Singh S Flexman A Fisher C Street J Boyd M Ailon T Dvorak M Kwon B Paquette S Dea N Charest-Morin R
Full Access

En bloc resection for primary bone tumours and isolated metastasis are complex surgeries associated with a high rate of adverse events (AEs). The primary objective of this study was to explore the relationship between frailty/sarcopenia and major perioperative AEs following en bloc resection for primary bone tumours or isolated metastases of the spine. Secondary objectives were to report the prevalence and distribution of frailty and sarcopenia, and determine the relationship between these factors and length of stay (LOS), unplanned reoperation, and 1-year postoperative mortality in this population. This is a retrospective study of prospectively collected data from a single quaternary care referral center consisting of patients undergoing an elective en bloc resection for a primary bone tumour or an isolated spinal metastasis between January 1st, 2009 and February 28th, 2020. Frailty was calculated with the modified frailty index (mFI) and spine tumour frailty index (STFI). Sarcopenia, determined by the total psoas area (TPA) vertebral body (VB) ratio (TPA/VB), was measured at L3 and L4. Regression analysis produced ORs, IRRs, and HRs that quantified the association between frailty/sarcopenia and major perioperative AEs, LOS, unplanned reoperation and 1-year postoperative mortality. One hundred twelve patients met the inclusion criteria. Using the mFI, five patients (5%) were frail (mFI ³ 0.21), while the STFI identified 21 patients (19%) as frail (STFI ³ 2). The mean CT ratios were 1.45 (SD 0.05) and 1.81 (SD 0.06) at L3 and L4 respectively. Unadjusted analysis demonstrated that sarcopenia and frailty were not significant predictors of major perioperative AEs, LOS or unplanned reoperation. Sarcopenia defined by the CT L3 TPA/VB and CT L4 TPA/VB ratios significantly predicted 1-year mortality (HR of 0.32 per one unit increase, 95% CI 0.11-0.93, p=0.04 vs. HR of 0.28 per one unit increase, 95% CI 0.11-0.69, p=0.01) following unadjusted analysis. Frailty defined by an STFI score ≥ 2 predicted 1-year postoperative mortality (OR of 2.10, 95% CI 1.02-4.30, p=0.04). The mFI was not predictive of any clinical outcome in patients undergoing en bloc resection for primary bone tumours or isolated metastases of the spine. Sarcopenia defined by the CT L3 TPA/VB and L4 TPA/VB and frailty assessed with the STFI predicted 1-year postoperative mortality on univariate analysis but not major perioperative AEs, LOS or reoperation. Further investigation with a larger cohort is needed to identify the optimal measure for assessing frailty and sarcopenia in this spine population


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 26 - 26
1 Dec 2021
Lang S Loibl M Gläsner J Simon M Rupp M Grad S Neumann C Alt V Gessner A Hanses F
Full Access

Aim. Vertebral osteomyelitis (VO) is an infection of the spine mostly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVD) and adjacent vertebral bodies (VB) is poorly described. We aimed to investigate the connection between infection, bone- and disc-metabolism in VO patients. Method. Fourteen patients with VO (infection group) and 14 patients with incomplete burst fractures of the spine (fracture group as controls) were included prospectively. Demographic data, treatment details, laboratory infection markers, and patient-reported outcome were assessed. Tissue biopsies from affected IVDs and adjacent VBs were analyzed for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone-metabolism by RT-qPCR. Results. The Receptor activator of NF-κB/Osteoprotegerin (RANK/OPG) expression ratio was elevated in VB and IVD of the infection group (p<0.001 and p=0.028, respectively). The RANK-ligand (RANKL)/OPG expression ratio was elevated in VB of the infection group (p<0.01). Expressions of the chemokines IL8 and CCL20 were higher in VB samples of the infection group. The expression of leptin was higher in IVD tissue, the mRNA expression of omentin and resistin was lower in VBs of the infection group. OPG mRNA expression was lower in infected VB and in IVD tissue compared to the fracture group. Conclusions. We identified similar expression patterns of pro-inflammatory cytokines and the RANK/RANKL/OPG axis in VBs and IVDs of patients with VO. This finding suggests that common immuno-metabolic pathways are involved in mechanisms leading to tissue degradation in VBs and IVDs during VO


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 21 - 21
1 Dec 2017
Kimm M Jauer L Hinke C Schleifenbaum JH Poprawe R
Full Access

Due to tumours or bone fractures caused by high mechanical impact, the affected tissue has to be removed. Preserving the physiological mobility after the treatment could prevent stress shielding or overload of the surrounding muscles and ligaments. In case of a critical vertebral body defect, the body and its attached disks have to be removed. Thereafter the adjacent vertebral bodies are braced together resulting in limited physiological spine movability. A flexible implant adapted to and preserving the patient-specific physiological spine mobility would be a desirable solution. Since Ti6Al4V is a common material for medical implants as well as in AM, it is used in this scientific study. Using design methodology tools, a systematic generation of possible solutions is achieved. Furthermore, already existing solid state hinges made of plastics with AM are taken as archetype and their design is adapted to the metal laser powder bed fusion (L-PBF) process. Therefore, an initial geometry design, based on a solid state hinge demonstrator made by TNO was created with Inventor 2016. By abstracting the vertebrae body segment, two contact surfaces, two joints with rotational degree of freedom (DOF) and axial suspension as well as one solid connection could be identified. As a first implant design, the abstracted joints are replaced by the designed hinges. By the application of simulation software tools the flexion behaviour of the solid state hinge can be analysed. Initial results show that the simulation of the flexion behaviour corresponds with the AM specimen. The applied force necessary for bending the specimen depends on the thickness of the struts


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 20 - 20
1 Jul 2020
Beausejour M Parent S Dallaire P Thibeault F El-Hawary R Sanders J Yaszay B Akbarnia B Tohme P Roy-Beaudry M
Full Access

This study addresses a crucial gap in the knowledge of normative spinal growth in children. The objective of this study is to provide detailed and accurate 3D reference values for global and segmental spinal dimensions in healthy children under the age of 11. Radiographic spine examinations of healthy children conducted to rule out scoliosis were reviewed in four scoliosis referral centers in North America. All consecutive children aged three to eleven years old with EOS biplanar good quality x-rays, but without diagnosed growth-affecting pathologies, were included. Postero-Anterior and Lateral calibrated x-rays were used for spine 3D reconstruction and computation of vertebral body height and spine length. Median and interquartile range were calculated from cross-sectional data. Smooth centiles growth curves for 3D True Spinal Length (3DTSL) between T1 and S1, as well as for mid-vertebral heights of T5, T12 and L3, where fit and calibrated from data using the Lambda-Mu-Sigma method (GAMLSS package for R). This method automatically selects the best performing distribution from a familly of choices. Tables of centiles were then predicted from the computed models for selected ages. A total of 638 full spine examinations from asymptomatic patients were reconstructed in 3D, 397 in girls and 241 in boys. Medians and interquartile ranges were calculated for 3DTSL (T1-S1): 285 (24) mm, 314 (26) mm and 349 (31) mm, and for selected vertebral heights T5: 10 (1) mm, 11 (1) mm and 12 (1) mm, T12: 13 (2) mm, 14 (1) mm and 16 (2) mm, and L3: 14 (1) mm, 16 (2) mm and 18 (2) mm, respectively for the 3–6, 6–8 and 8–11 age groups. Centile curves ready for clinical use of the 3DTSL (T1-S1) and of the vertebral heights of T5, T12 and L3 as a function of age were derived for the 5, 10, 25, 50, 75, 90 and 95th centiles. In general, boys presented linear relationships between spinal dimensions and age, and girls presented more diverging trends with increased variance for older ages. Accordingly curves for boys follow the Normal distribution whereas those for girls follow the original Box-Cox-Cole-Green distribution. Model diagnostic tests (normally distributed residuals, adequate wormplots and |Z statistics| < 2) confirmed adequacy of the models and the absence of significant misfit. Accurate reference values were derived for spinal dimensions in healthy children. Spinal dimension charts showed that the spinal lengths and vertebral heights changed relatively constantly across the age groups closely resembling WHO total body height charts. The reference values will help physicians better assess their patients' growth potential. It could also be used to predict expected spinal dimensions at maturity or changes in pathologic conditions as well as to assess the impact of growth friendly interventions in the correction of spinal deformities


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 50 - 50
1 Jul 2020
Gascoyne T Parashin S Zarrabian M
Full Access

The purpose of this research was to determine the feasibility of radiostereometric analysis (RSA) as a diagnostic tool for assessing non-union following spinal arthrodesis procedures. Further, to estimate clinical thresholds for precision and accuracy of the proposed method in the cervical and lumbar spine. A three-level lumbo-sacral and a four-level cervical posterior arthrodesis procedures were performed on an artificial spine model (Sawbones, WA). Using a spring loaded inserter (RSA Biomedical, Sweden), eight to ten RSA markers were placed within each of the L4 and L5 segments in the spinous process (L4 only), lamina, transverse processes, posterior and anterior (down the pedicle) wall of the vertebral body. Eight to ten markers were placed within the proximal sacrum (S1) at the medial and lateral crests, tuberosity, and within the sacral canal wall. Four to eight RSA markers were placed into the C3-C6 lateral masses. Titanium screws and rods were applied to the spinal segments. Identical procedures were then performed on a cadaveric spine using similar bead placement and hardware. RSA imaging consisted of 12 double exams (24 exams) of the cervical and lumbar regions for both the Sawbones and cadaveric spine to assess precision of measurement under zero-displacement conditions. The most distal vertebrae were considered the datum against which the movement of all other vertebrae was compared. The artificial spine was then dismantled for accuracy assessment in which the middle vertebrae (L5 and C4-C5) were moved relative to the superior (L4 and C3) and inferior (S1 and C6) vertebrae by known, incremental displacements on an imaging phantom device. Displacements occurred along the superior-inferior, anterior-posterior, and flexion-extension (rotational) axes of motion. RSA images were obtained at each displacement. Image analysis was performed using model-based software (RSACore v3.41, Leiden, Netherlands) to visualize implanted RSA beads in 3-D space. Precision was defined as the 95% confidence interval of error in measuring zero-displacement. Accuracy was defined as the mean difference (with 95% confidence interval) between the known and measured displacement. The rate of RSA bead detection was high with 5–8 implanted beads being visible in both the lumbar and cervical regions of the artificial and cadaveric spines. Translational RSA precision for both spines was better than 0.25 mm and 0.82 mm for the lumbar and cervical regions, respectively. Rotational precision was better than 0.40° and 1.9° for the lumbar and cervical regions, respectively. RSA accuracy for the artificial spine overall demonstrated less than 0.11 mm translational bias (margin < ±0.02 mm) and less than 0.22° rotational bias (margin < ±0.15°). This study demonstrates that RSA achieves sufficient precision and accuracy to detect intervertebral micromotion for the purpose of assessing arthrodesis. Well dispersed RSA bead placement is critical to achieving sufficient accuracy as well as avoiding occlusion by metal hardware. Cervical bead implantation is particularly sensitive to bead clustering due to small vertebrae size and proximity to critical structures. The results of this work will aid in the development of a clinical study to assess arthrodesis in patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2020
Oshima Y Watanabe N Takeoka T Iizawa N Majima T Takai S
Full Access

Introduction. Upright body posture is maintained with the alignment of the spine, pelvis, and lower extremities, and the muscle strength of the body trunk and lower extremities. Conversely, the posture is known to undergo changes with age, and muscle weakness of lower extremities and the restriction of knee extension in osteoarthritis of the knee (knee OA) have been considered to be associated with loss of natural lumbar lordosis and abnormal posture. As total knee arthroplasty (TKA) is aimed to correct malalignment of lower extremities and limited range of motion of knee, particularly in extension, we hypothesized that TKA positively affects the preoperative abnormal posture. To clarify this, the variation in the alignment of the spine, pelvis, and lower extremities before and after TKA was evaluated in this study. Patients and methods. Patients suffering from primary knee OA who were scheduled to receive primary TKA were enrolled in this study. However, patients with arthritis secondary to another etiology, i.e. rheumatoid arthritis, trauma, or previous surgical interventions to the knee, were excluded. Moreover, patients who suffered from hip and ankle OA, cranial nerve diseases, or severe spinal deformity were also excluded. The sagittal vertical axis (SVA), the horizontal distance between the posterosuperior aspect of the S1 endplate surface and a vertical plumb line drawn from the center of the C7 vertebral body, is an important index of sagittal balance of the trunk. Thus, patients were classified into two groups based on the preoperative SVA with preoperative standing lateral digital radiographs: normal (< 40mm) and abnormal (≥ 40mm) groups. The variations in the sagittal alignment of the spine, pelvis and lower extremities were evaluated preoperatively, and at 1 and 3 months postoperatively. This study was approved by an institutional review board, and informed consent for participation was obtained from the patients. Results. Forty-nine knees in 49 patients were enrolled. Three different patterns of postural changes as well as hip and knee angles following TKA were observed. After TKA, the preoperatively normal SVA patients (26.5%) showed extension of the hip and knee joints and decrease of lumbar lordosis, while the SVA remained almost within the normal range. In the preoperatively abnormal SVA group, 13 patients (26.5%) showed extension of the knee joint while the SVA remained abnormal, however, 23 of the preoperatively abnormal SVA group patients (47.0%) showed improvement of SVA into the normal range with the extension of the hip and knee joints. Discussion. As the spine, pelvis, and lower extremities together affect body alignment, once limitation of knee extension due to severe knee OA is corrected and lower extremity alignment is improved with TKA, the lumbar lordosis may increase, and SVA could decrease. Recently, the relationship between the imbalance of the sagittal plane of the body and the risk of falls was described. From this, it could be said that TKA not only helped in recovering knee function and lower extremity alignment in severe knee OA, but also helped to improve posture and to protect from falls


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 164 - 164
1 May 2012
Pak P Oliver R Bell D Yu Y Bellemore J Walsh W
Full Access

Posterolateral spinal fusion using autograft in adult rabbits has been reported by many groups using the Boden model. Age in general has an adverse effect on skeletal healing; although, its role in posterolateral fusion is not well understood. This study examined the influence of animal age on spinal fusion using a standard model and experimental endpoints. We hypothesised that fusion quality and quantity would be less with increasing age. A single level posterolateral fusion between the fifth and sixth lumbar segments were performed in six-month and two-year-old New Zealand white rabbits (n=6 per group) using morcelized iliac crest autograft. All animals were sacrificed at 12 weeks following surgery. Posteroanterior Faxitron radiographs and CT scans were taken and DICOM data was analysed (MIMICS Version 12, Materialise, Belgium). Axial, sagittal, coronal and three-dimensional models were created to visualise the fusion masses. Bone mineral density (BMD) of the fusion mass was measured using a Lunar DPXL Dexa machine. An MTS Bionix testing machine was then used to assess peak load and stiffness. Sagittal and coronal plane histology was evaluated in a blinded fashion using H&E, Tetrachrome and Pentachrome stains. Assessment included overall bony response on and between the transverse processes. Radiographs and CT confirmed a more robust healing response in younger animals. Radiographic union rates decreased from 83% to 50% in the aged animals. A neo- cortex surrounding the fusion mass was observed in the younger group but absent in the aged animals. Fusion mass BMD and that of the vertebral body was decreased in the older animals (P<0.05). Tensile mechanical data revealed a 30% reduction in peak load (P=0.024) and 34% reduction in stiffness (P=0.073) in the two-year-old animals compared with the six-month-old animals. Histological evaluation demonstrated a reduction in overall biological activity in the two-year-old animals. This reduction in activity was observed in the more challenging intertransverse space as well as adjacent to the transverse processes and vertebral bodies at the decortication sites. Numerous sites of new bone formation was present in the middle of the fusion mass in the six-month-old animals while the bone graft in the two-year- old animals were less viable. Skeletal healing is complex and mediated by both local and systemic factors. This study demonstrated that ageing leads to an impaired and delayed skeletal repair. Where autograft is utilised, diminished graft osteoinductivity and reduced levels of growth factors and nutritional supply in the surrounding milieu explains our observations. The aged rabbit posterolateral spinal fusion model has not been previously described but would be a useful to evaluate new treatment modalities in a more challenging host environment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 35 - 35
1 Sep 2012
Lo V Akens M Wise-Milestone L Yee A Wilson B Whyne CM
Full Access

Purpose. Maintenance of vertebral mechanical stability is of paramount importance to prevent pathologic fractures and resultant neurologic compromise in individuals with spinal metastases. Current non-surgical treatments for vertebral metastases (i.e. chemotherapy, bisphophonates (BP) and radiation) yield variable responses in the tumour and surrounding bone. Photodynamic therapy (PDT) is a novel, minimally-invasive technology that utilizes a drug activated by light at a specific non-thermal wavelength to locally destroy tumour cells. Previously, we observed that PDT can ablate cancer cells within bone and yield short-term (1-week) improvements in vertebral architecture and biomechanical strength, particularly when combined with BP therapy. This study aims to evaluate the effects of PDT in vertebral bone over a longer (6-week) time period, alone and combined with previous BP treatment, to determine if improvements in skeletal architecture and strength are maintained. Method. Fourty healthy rnu/rnu rats were randomly assigned to four treatment groups: (i) untreated control, (ii) BP only, (iii) PDT only and (iv) PDT following BP. BP treatments were administered on day 0 via subcutaneous injection of zoledronic acid. PDT was administered on day 7 via an intravenous injection of BPD-MA photosensitizer. A flat-cut optical fiber was inserted percutaneously adjacent to lumbar vertebra L2. After a 15-minute drug-light interval, 75J of light energy was delivered from a 690nm laser. Six weeks later, animals were euthanized. Structural properties of excised L2 vertebral bodies were quantified through semi-automated analysis of micro-CT images. In of the specimens, mechanical properties were evaluated by loading the L2 vertebral body to failure in axial compression. The remaining L2 vertebrae were analyzed for morphology, osteoid formation and osteoclast activity using histological methods. Results. Combined PDT+BP treatment yielded the largest increases in bone volume fraction (31%), trabecular thickness (45%) and vBMD (37%) and decreases in trabecular number (14%) and separation (26%) compared to untreated controls (n=10, all p<0.05). The cortical shell mass fraction was significantly lower than that of controls (24%) indicating increases in bone structure were primarily due to trabecular changes. Mechanically, PDT+BP treatment demonstrated a trend towards an increase in ultimate force compared to controls (n=5, p=0.176). BP-only and PDT-only treatments demonstrated similar trends to the combined treatment, but with a lower magnitude of effect. Qualitatively, histological analysis suggested more osteoid formation in groups receiving PDT, and a higher proportion of bone in BP-treated groups. Conclusion. PDT has a sustained positive effect on the mechanical and structural integrity of bone, particularly in combination with BP treatment. By ablating tumour tissue and strengthening bone, combined PDT+BP treatment presents as an attractive adjuvant minimally-invasive therapy for spinal metastasis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 24 - 24
1 May 2018
Spurrier E Masouros S Clasper J
Full Access

Spinal fractures are common following underbody blast. Most injuries occur at the thoracolumbar junction, and fracture patterns suggest the spine is flexed at the moment of injury. However, current mechanistic descriptions of vertebral fractures are based on low energy injuries, and there is no evidence to correlate fracture pattern with posture at the loading rates seen in blast injury. The T12-L1 segment of 4 human spines was dissected to preserve the paraspinal ligaments and potted in polymethylmecrylate. The specimens were impacted with a 14 kg mass at 3.5m/s in a drop tower; two specimens were impacted in neutral posture, one in flexion, and one in extension. A load cell measured the load history. CT scans and dissection identified the injury patterns. Each specimen sustained a burst fracture. The neutral specimens demonstrated superior burst fractures, the flexed specimen demonstrated a superior burst fracture with significant anterior involvement, and the extended specimen showed a posterior vertebral body burst fracture. At high loading rates, the posture of the spine at the moment of injury appears to affect the resulting fracture. This supports understanding the behaviour of the spine in blast injury and will allow improved mitigation system design in the future


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 520 - 520
1 Dec 2013
Orias AE Saruta Y Mizuno J Yamaguchi T Mizuno M Inoue N
Full Access

INTRODUCTION:. As a consequence from cervical arthroplasty, spine structural stiffness, loading and kinematics are changed, resulting in issues like adjacent segment degeneration and altered range of motion. However, complex anatomical structures and lack of adequate precision to study the facet joint (FJ) segmental motion in 3D have prevented proper quantitative analyses. In the current study, we investigate the innovative use of a local coordinate system on the surface of the superior articular process of the caudal vertebral body in order to analyze FJ segmental motion using CT-based 3D vertebral models in flexion/extension. METHODS:. CT images were obtained from six patients (2F/4M, mean age: 53 y.o.) with cervical degenerative disc disease in neutral, flexion and extension positions. CT data was used to create subject-specific surface mesh models of each vertebral body. From these, mean normal vectors were calculated for all FJ surfaces and posterior walls from C3/4 down to C6/7 (Fig. 1). The global coordinate system (x, y, z) corresponds to the CT scanner. Within this system, a new local coordinate system (u, v, w) was set on the centroid of each FJ surface (Fig. 1), where the u-, v-, and w- axes correspond to the normal-to-the-FJ, right-left and cranio-caudal directions, respectively. In flexion/extension, translations in mm were calculated as differences in the FJ centroid position and rotations were calculated in degrees as angular differences of the vector of the opposing surface in flexion/extension. Results are presented as mean ± SD. Differences within vertebral levels and left/right FJs were sought using 1- or 2-way ANOVA, respectively. RESULTS:. The flexion/extension segmental motion was described in its six degrees-of-freedom. Among the three translations, the largest movement was observed in the cranio-caudal direction (u = −0.22 ± 0.47 mm, v = 0.11 ± 0.89 mm, w = −2.06 ± 1.60 mm); while the three rotations about the (u, v, w) axes showed a dominant rotation about the v-axis (u = −0.41 ± 4.42°, v = −5.12 ± 5.61°, w = −0.01 ± 2.71°). Comparing translational and rotational motions by cervical level, movements at C6/7 were shown to be smaller than those at the other levels (p < 0.05) (Figs. 2, 3). There were no significant differences in the movement of the FJ between left and right sides (p > 0.05). DISCUSSION:. A key finding of this study was that along with the expected translation in the w-axis, there was rotation about the v-axis consistent with the overall neck flexion-to-extension motion. If the rotation about the v-axes were negligible, the FJ motion could be considered as a pure translation (sliding), but the data suggests otherwise. This finding supports the hypothesis of a rolling-sliding type of facet segmental motion that might be influenced by the facet surface curvature. Future studies will focus on analyses of the changes in FJ gap with motion and characterization of the facet surfaces' curvature and congruence. SIGNIFICANCE: An innovative look into flexion/extension motion from the FJ point of view describes FJ segmental motion as a sliding-rolling motion instead of the traditional concept of sliding-only mechanism


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 21 - 21
1 Mar 2013
Miller A Stew B Moorhouse T Owens D Whittet H
Full Access

The anatomy of the prevertebral region of the neck is of vital importance to orthopaedic surgeons when managing cervical spine trauma. Lateral radiographs are used in the acute assessment of this area as they are readily available and cost effectiveness. Thickening of the retropharyngeal space on a radiograph may be highly suggestive of serious and life-threatening pathologies. Accurate interpretation of radiological evidence is essential to assist the clinician in diagnosis. Current guidelines for radiological measurement state that these prevertebral soft tissues should not exceed 5mm at the midvertebral level of C3 and 20mm at C7. A ratio between soft tissue measurements and the width of the corresponding vertebra has also been championed as this takes into account magnification errors and variation in patient body habitus. Soft tissue measurements greater than 30% of the upper cervical vertebral bodies and greater than 100% of the lower cervical vertebral bodies are considered to be abnormal. The aim of this study was to assess reliability of current radiological guidelines on soft tissue measurement. A review of 200 consecutive normal lateral soft tissue cervical spine radiographs was undertaken. Patients were included if they were immobilised for blunt trauma and were aged 18 or older. Each patient included had cervical pathology excluded by a combination of clinical examination, flexion-extension views, CT and or MRI. Exclusion criteria included those patients with pre-existing cervical or retropharyngeal pathology, those who had been intubated or had a nasogastric tube passed. Two reviewers independently assessed soft tissue and bony widths at C3 and C7 using the PACs Software. All measurements were taken at the mid vertebral level, not at the end plates to ensure any anterior osteophytes did not create a falsely wide measurement. Plane film radiographs of 107 males and 93 females were included with an average age of 53. At the C3 level, mean soft tissue widths were 4.7mm ± 0.84mm SD and ranged from 2.7 to 7.4mm. The mean soft tissue width at C7 was 14.4mm ± 2.8mm SD with a range of 7.1 to 21.0 mm. Our results show 21.5% (43/200) of the patients exceeded the 5mm upper limit and 20% (40/200) exceeded the soft tissue to vertebra ratio at C3. Only 1% (2/200) of patients exceeded the upper limit of 20mm at C7 and only 2% (4/200) exceeded the soft tissue to vertebra ratio. The C3 guideline for maximum soft tissue widths has a poor specificity (78.5%) and the soft tissue to vertebral ratio at this level may also lead to further unnecessary investigation, as it too has a specificity of only 80%. However, the guidelines for PVST measurements at C7 are much more reliable with a specificity of 99.5% for the absolute measurement and 99% for the soft tissue to vertebra ratio. The ratio measurement has not conferred any significant diagnostic benefit over the static measurement. Current guidelines overestimate injuries at the C3 level but seem appropriate at the C7 level. There is no major benefit to using a ratio measurement over an absolute value


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2017
Hanberg PE Bue M Sørensen HB Søballe K Tøttrup M
Full Access

Aim. Pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates. Nevertheless, tissue pharmacokinetic studies of relevant antimicrobials in both prophylactic and therapeutic situations are still sparse. Previous approaches based on bone biopsy and discectomy exhibit important methodological limitations. The objective of this study was therefore to assess the concentration of cefuroxime in intervertebral disc (IVD), vertebral body cancellous bone, subcutaneous adipose tissue (SCT) and plasma pharmacokinetics after single dose administration by use of microdialysis (MD) in a large animal model. Method. Ten female pigs were assigned to receive 1,500 mg of cefuroxime intravenously over 15 min. Measurements of cefuroxime were obtained from plasma, SCT, the vertebral cancellous bone and the IVD for 8 hours thereafter. MD was applied for sampling in solid tissues. The cefuroxime concentration in both the MD and plasma samples was determined using ultra-high performance liquid chromatography. Results. For both the IVD and the vertebral cancellous bone, the area under the concentration-curve from zero to the last measured value was significantly lower than that of free plasma. Tissue penetration of cefuroxime was incomplete for the IVD, whereas for vertebral cancellous bone and SCT it was not. Furthermore, the penetration of cefuroxime from plasma to IVD was delayed. Additionally, a noticeable prolonged elimination rate of cefuroxime in the IVD was found. The maximal concentration and the elimination of cefuroxime were reduced in IVD compared to both SCT and vertebral cancellous bone. Due to this delay in elimination of cefuroxime, the time with concentrations above the minimal inhibitory concentration (T>MIC) was significantly higher in IVD than in SCT, vertebral cancellous bone and free plasma for MICs up to 6 μg/ml. Conclusions. MD was successfully applied for serial assessment of the concentration of cefuroxime in the IVD and the vertebral cancellous bone. Penetration of cefuroxime from plasma to IVD was found to be incomplete and delayed, but due to a prolonged elimination, the best results regarding T>MIC was found in IVD


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 107 - 107
1 Oct 2012
Vrtovec T Janssen M Pernuš F Castelein R Viergever M
Full Access

Pelvic incidence is as a key factor for sagittal balance regulation that describes the anatomical configuration of the pelvis. The sagittal alignment of the pelvis is usually evaluated in two-dimensional (2D) sagittal radiographs in standing position by pelvic parameters of sacral slope, pelvic tilt and pelvic incidence (PI). However, the angle of PI remains constant for an arbitrary subject position and orientation, and can be therefore compared among subjects in standing, sitting or supine position. Such properties also enable the measurement of PI in three-dimensional (3D) images, commonly acquired in supine position. The purpose of this study is to analyse the sagittal alignment of the pelvis in terms of PI in 3D computed tomography (CT) images. A computerised method based on image processing techniques was developed to determine the anatomical references, required to measure PI, i.e. the centre of the left femoral head, the centre of the right femoral, the centre of the sacral endplate, and the inclination of the sacral endplate. First, three initialisation points were manually selected in 3D at the approximate location of the left femoral head, right femoral head and L5 vertebral body. The computerised method then determined the exact centres of the femoral heads in 3D from the spheres that best fit to the 3D edges of the femoral heads. The exact centre of the sacral endplate in 3D was determined by locating the sacral endplate below the L5 vertebral body and finding the midpoint of the lines between the anterior and posterior edge, and between the left and right edge of the endplate. The exact inclination of the sacral endplate in 3D was determined from the plane that best fit to the endplate. Multiplanar 3D image reformation was applied to obtain the superposition of the femoral heads in the sagittal view, so that the hip axis was observed as a straight not inclined line and all anatomical structures were completely in line with the hip axis. Finally, PI was automatically measured as the angle between the line orthogonal to the inclination of the sacral endplate and the line connecting the centre of the sacral endplate with the hip axis. The method was applied to axially reconstructed CT scans of 426 subjects (age 0–89 years, pixel size 0.4–1.0 mm, slice thickness 3.0–4.0 mm). Thirteen subjects were excluded due to lumbar spine trauma and presence of the sixth lumbar segment. For the remaining subjects, the computerised measurements were visually assessed for errors, which occurred due to low CT image quality, low image intensity of bone structures, or other factors affecting the determination of the anatomical references. The erroneous or ambiguous results were detected for 43 subjects, which were excluded from further analysis. For the final cohort of 370 subjects, statistical analysis was performed for the obtained PI. The resulting mean PI ± standard deviation was equal to 46.6 ± 9.2 degrees for males (N = 189, age 39.7 ± 20.3 years), 47.6 ± 10.7 degrees for females (N = 181, age 43.4 ± 19.9 years), and 47.1 ± 10.0 degrees for both genders (N = 370, age 41.5 ± 20.1 years). Correlation analysis yielded relatively low but statistically significant correlation between PI and age, with the correlation coefficient r = 0.20 (p < 0.005) for males, r = 0.32 (p < 0.0001) for females, and r = 0.27 (p < 0.0001) for both genders. No statistically significant differences (p = 0.357) were found between PI for male and female subjects. This is the first study that evaluates the sagittal alignment of the pelvis in terms of PI completely in 3D. Studies that measured PI manually from 2D sagittal radiographs reported normative PI in adult population of 52 ± 10 degrees, 53 ± 8 degrees and 51 ± 9 degrees for 25 normal subjects aged 21–40, 41–60, and over 60 years, respectively [3], and 52 ± 5 degrees for a cohort of 160 normal subjects [4]. The PI of 47 ± 10 degrees obtained in our study is lower than the reported normative values, which indicates that radiographic measurements may overestimate the actual PI. Radiographic measurements are biased by the projective nature of X-ray image acquisition, as it is usually impossible to obtain the superposition of the two femoral heads. The midpoint of the line connecting the centres of femoral heads in 2D is therefore considered to be the reference point on the hip axis, moreover, the inclination of the sacral endplate in the sagittal plane is biased by its architecture and inclination in the coronal plane. On the other hand, the measurements in the present study were obtained by applying a computerized method to CT images that determined the exact anatomical references in 3D. Perfect sagittal views were generated by multiplanar reformation, which aligned the centres of the femoral heads in 3D. The measurement of PI was therefore not biased by acquisition projection or structure orientation, as all anatomical structures were completely in line with the hip axis. Moreover, the range of the PI obtained in every study (standard deviation of around 10 degrees) indicates that the span of PI is relatively large. It can be therefore concluded that an increased or decreased PI may not necessary relate to a spino-pelvic pathology


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 16 - 16
1 May 2015
Torrie A Harding I Hutchinson J Nelson I Adams M Dolan P
Full Access

The study aim was to simulate oblique spinous process abutment (SPA) in cadaveric spines and determine how this affects coupled motion in the coronal plane. L4-S1 spinal segments from thirteen cadavers were loaded on a materials testing machine in pure compression at 1kN for 10 minutes. Reflective markers on the vertebral bodies were used to assess coronal motion using a motion analysis system. Oblique SPA was simulated by attaching moulded oblique aluminium strips to the L4 and L5 spinous processes. In each specimen, both a right- and left-sided SPA was simulated, in random order, and compression at 1kN was again applied. All tests were then repeated after endplate fracture. Coronal plane motion at baseline was compared with values following simulated SPA using Mann Whitney U-tests. Pre-fracture, SPA increased coronal motion by 0.28° and 0.34° on right and left sides respectively, compared to baseline, only the former was significant (P=0.03). Post-fracture, SPA decreased coronal motion by 0.36° and 0.46° on right and left sides respectively, only the latter was significant (P=0.03). Simulated oblique SPA in the intact spine initiated an increase in coronal motion during pure axial loading. These findings provide limited evidence that oblique SPA may be causative in DLS