Aims. Although lumbosacral transitional
Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This study aimed to establish an understanding of microdamage accumulation and load to failure in healthy and osteolytic
Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and load to failure in osteolytic
Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and load to failure in osteolytic
Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic
Aims. The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF. Methods. The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected
Dimensions of the 60 male human lumbar
Background. Fracture of an osteoporotic vertebral body reduces vertebral stiffness and decompresses the nucleus in the adjacent intervertebral disc. This leads to high compressive stresses acting on the annulus and neural arch. Altered load-sharing at the fractured level may influence loading of neighbouring
Image-guided spine surgery requires registration between the patient anatomy and the preoperative computed tomography (CT) image. We have previously developed an accurate and robust registration technique for this application by using intraoperative ultrasound to acquire patient anatomy and then registering the ultrasound images to the CT images by aligning the posterior vertebral surfaces extracted from both modalities. In this study, we validate our registration technique across 18
Introduction. Osteoporotic fracture reduces vertebral stiffness, and alters spinal load-sharing. Vertebroplasty partially reverses these changes at the fractured level, but is suspected to increase deformations and stress at adjacent levels. We examined this possibility. Methods. Twelve pairs of three-vertebra cadaver spine specimens (67-92 yr) were loaded to induce fracture. One of each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Specimens were then creep-loaded at 1.0kN for 1hr. In 15 specimens, either the uppermost or lowest vertebra was fractured, so that compressive stress distributions could be determined in the disc between adjacent non-fractured
Introduction. Vertebral osteoporotic fracture increases both elastic and time-dependent ('creep') deformations of the fractured vertebral body during subsequent loading. The accelerated rate of creep deformation is especially marked in central and anterior regions of the vertebral body where bone mineral density is lowest. In life, subsequent loading of damaged
Introduction The NIH estimates that 30–50% of women and 20–30% of men will develop a vertebral fracture in their lifetime. 700,000 vertebral fractures occur each year in the United States alone, 85% of which are associated with osteoporosis. Osteoporosis leads to reduced stiffness of vertebral cancellous bone and eventual loss of cortical wall thickness. This study aims to investigate the effects of cortical wall thickness and cancellous bone elastic modulus on vertebral strength and fracture patterns using synthetic
Introduction: Anterior vertebral body deformities lead to senile kyphosis in many elderly people. Metabolic weakening of bone plays a major role in such osteoporotic “fractures”, but there is evidence also that altered load-sharing in the elderly spine pre-disposes the anterior vertebral body to damage. The insidious onset of many vertebral deformities suggests that gradual time-dependent “creep” processes may contribute, as well as sudden injury. Bone is known to have viscoelastic properties, but creep deformity of whole
The impact of cement leakage during percutaneous vertebroplasty has not been well characterized. This study aimed to quantify and compare cement leakage and its clinical significance in osteoporotic and metastatic
Osteoporosis can cause significant disability and cost to health services globally. We aim to compare risk fractures for both osteoporosis and fractures at the L1-L4
With the development of new implants there is an increasing need for biomechanical studies. The problem of obtaining human specimen is well appreciated. Porcine spines are commonly used. To date there are no studies delineating the anatomy of porcine thoracolumbar
Malignant hyperthermia (MH) is a pharmacogenetic disorder, potentially lethal, due to the exposure to anesthetic drugs that triggers, a high increase of corporal temperature, progressive muscular stiffness, severe rabdomiolisis and death due to cardiac dysfunction. Many research works relate Malignant Hyperthermia to muscular illnesses or to the King Syndrome. Through this study we present the incidence of MH in patients with congenital
Background: Continuous bone “creep” under constant load can cause measurable deformity in cadaveric
1. A twenty-six-year-old woman was paraplegic because of a benign giant-cell tumour which had destroyed the body of the twelfth thoracic vertebra completely and the bodies of the eleventh thoracic and first lumbar
We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional