Introduction. Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured
Compressive fracture of osteoporotic vertebrae has been one of the most important health problems in aged societies because severely injured spin might be a reason of bedridden for elderly people. Osteoporosis has been widely assessed by averaged bone mineral density of vertebrae measured using DEXA, however, BMD sometimes does not reflect the strength of vertebrae. CT imaged based finite element method (CT-FEM) has been applied to evaluate the strength of vertebrae based on the biomechanics theory and approved by a part of the highly advanced medical treatment in Japan. In the present study, compressive strength of more than 100 vertebrae were evaluated using CT-FEM, and the correlation between BMD and the strength was thoroughly investigated. It was found that some vertebrae with high BMD could have low strength which may cause fracture easily. Thus, a controversial point of the BMD based diagnosis of osteoporosis was clearly indicated. In this invited talk, some basic theories of CT-FEM and fracture assessment and some key results from the recent study will be presented.
To evaluate the safety and efficacy of vertebroplasty with short segmented cement augmented pedicle screws fixation for severe osteoporotic vertebral compression fractures (OVCF) with posterior/anterior wall fractured patients. A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed.Abstract
Objectives
Methods
Transarticular screws at the C1 to C2 level of the cervical spine provide rigid fixation, but there is a danger of injury to a vertebral artery. The risk is related to the technical skill of the surgeon and to variations in local anatomy. We studied the grooves for the vertebral artery in 50 dry specimens of the second cervical vertebra (C2). They were often asymmetrical, and in 11 specimens one of the grooves was deep enough to reduce the internal height of the lateral mass at the point of fixation to ≤2.1 mm, and the width of the pedicle on the inferior surface of C2 to ≤2 mm. In such specimens, the placement of a transarticular screw would put the vertebral artery at extreme risk, and there is not enough bone to allow adequate fixation. Before any decision is made concerning the type of fixation to be used at C2 we recommend that a thin CT section be made at the appropriate angle to show both the depth and any asymmetry of the grooves for the vertebral artery.
Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve communication among pelvic surgeons and inform treatment strategy. 300 Pelvic CT scans from skeletally mature trauma patients that did not have pre-existing posterior pelvic pathology were identified. Axial and coronal transosseous corridor widths at both S1 and S2 were recorded. Additionally, the S1 lateral mass angle were also calculated. Pelvises were classified based upon the sacroiliac joint (SIJ) height using the midpoint of the anterior cortex of L5 as a reference point. Four distinct types could be identified:. Type-A – SIJ height is above the midpoint of the anterior cortex of the L5
Intra-Discal Vacuum Phenomenon (IDVP) represents an intradiscal nitrogen gas accumulation where a cavity opens in a supine position, lowering intra-discal pressure and generating a bubble. IDVP has been observed in up to 20% of elderly patients and reported in almost 50% of chronic LBP patients. With a highly accurate detection on CT, its significance lacks clarity and consideration within normative data. IDVP occurs with patterns of lumbar and/or lumbopelvic morphology and associated diagnoses. Over-60s population based sample of 2020 unrelated CT abdomen scans without acute spinal presentations, with sagittal reconstructions, inclusive of T12 to femoral heads, were analyzed for IDVP and pelvic incidence (PI). Subjects with diagnostic morphological associations of the lumbar spine, including previous fracture, autofusion, transitional
Introduction. This research aims to enhance the control of intricate musculoskeletal spine models, a critical tool for comprehending both healthy and pathological spinal conditions. State-of-the-art musculoskeletal spine models incorporate segments for all
The current study aims to compare the clinico radiological outcomes between Non-Fusion Anterior Scoliosis (NFASC) Correction and Posterior Spinal Fusion (PSF) for Lenke 5 curves at 2 years follow up. Methods:38 consecutive Lenke 5 AIS patients treated by a single surgeon with NFASC (group A) or PSF (group B) were matched by age, Cobb's angle, and skeletal maturity. Intraoperative blood loss, operative time, LOS, coronal Cobbs, and SRS22 scores at 2 years were compared. Flexibility was assessed by modified Schober's test. Continuous variables were compared using student t-tests and categorical variables were compared using chi-square. The cohort included 19 patients each in group A and B . Group A had M:F distribution of 1:18 while group B had 2:17. The mean age in group A and group B were 14.8±2.9 and 15.3±3.1 years respectively. The mean follow-up of patients in groups A and B were 24.5±1.8 months and 27.4±2.1 months respectively. Mean pre-op thoracolumbar/lumbar (TL/L) cobbs for group A and group B were 55°±7° and 57.5°±8° respectively. At two years follow up, the cobbs for group A and B were 18.2°±3.6° and 17.6°±3.5° respectively (p=0.09). The average operating time for groups A and B were 169±14.2 mins and 219±20.5 mins respectively (p<0.05). The average blood loss of groups A and B were 105.3±15.4 and 325.3±120.4 respectively (p<0.05). The average number of instrumented
Bone metastases radiographically appear as regions with high (i.e. blastic metastases) or low (i.e. lytic metastases) bone mineral density. The clinical assessment of metastatic features is based on computed tomography (CT) but it is still unclear if the actual size of the metastases can be accurately detected from the CT images and if the microstructure in regions surrounding the metastases is altered (Nägele et al., 2004, Calc Tiss Int). This study aims to evaluate (i) the capability of the CT in evaluating the metastases size and (ii) if metastases affect the bone microstructure around them. Ten spine segments consisted of a
MicroRNA´s are regulatory sequences which influence the posttranscriptional synthesis of about 70% of protein encoding genes. In different studies, MicroRNA-146a (miR-146a) was associated with inflammatory and autoimmunological processes. In vitro it was shown, that miR-146a influences the bone metabolism by regulating differentiation of mesenchymal stem cells. The miR-146a deficient mouse starts to develop lymphoproliferative and myeloproliferative disease by 6–8 months of age. In this study, we investigate the influence of miR-146a deficiency on bone structure and stability dependent on age and gender. Material and Methods. Male and female mice of wild type (WT) and miR-146a deficient (KO) animals at the age of 2–3 and 5–7 month were analyzed Femur, Tibia and lumbar
Pedicle screws fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. However their positioning remain difficult due to variation in anatomical shape, dimensions and orientation, which can determine the inefficacy of treatment or severe damages to close neurologic structures. Image guided navigation allows to drastically decrease errors in screw placement but it is used only by few surgeons due to its cost and troubles related to its using, like the need of a localizer in the surgical scenario and the need of a registration procedure. An alternative image guided approach, less expensive and less complex, is the using of patient specific templates similar to the ones used for dental implants or knee prosthesis. Like proposed by other authors we decided to design the templates using CT scans. (slice thickness of 2.0 mm). Template developing is done, for each
Summary Statement. Bilaretal epiphysiodesis of he neurocentral cartilages causes shortening of the sagittal length of the pedicles and a subsequent spinal stenosis at the operated segments, resembling that found in patients with achrondroplasia. Introduction. The introduction of pedicle screws in the immature spine may have implications for the growth of the
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each
Balloon kyphoplasty (BKP) is a minimally invasive surgical technique used to correct kyphosis and vertebral compression fractures. BKP uses cement to fill a void created by the inflation of a balloon in a
Head collisions in sport can result in catastrophic cervical spine injuries. Musculo-skeletal (MSK) modelling can help analyse the relationship between players' motion, external loading and internal stresses that lead to injury. However, the literature lacks sport specific MSK models. In automotive research the intervertebral disc behaviour has been represented as viscoelastic elements (“bushing”), whose stiffness and damping parameters are often estimated under quasi-static conditions and may lack validity in dynamic impacts. The aim of this study was to develop a validated cervical spine model for axial impacts for future use in the analysis of head-first rugby collisions. A drop test rig was used to replicate a sub-catastrophic axial head impact. A load of 80 N from 0.5 m was applied to the cranial aspect of a C2-C6 porcine spinal specimen mounted in the neutral position. The 3D motion of C3-C5
Summary. Time-lapsed CT offers new opportunities to predict the risk of cement leakage and to evaluate the mechanical effects on a vertebral body by monitoring each incremental injection step in an in-vitro vertebroplasty procedure. Introduction. Vertebroplasty has been shown to reinforce weak vertebral bodies and to prophylactically reduce fracture risks. However, bone cement leakage is a major vertebroplasty related problem which can cause severe complications. Leakage risk can be minimised by injecting less cement into the vertebral body, inevitably compromising the mechanical properties of the augmented bone, as a proper endplate-to-endplate connection of the injected cement is needed to obtain a mechanical benefit. Thus the cement flow in a vertebroplasty procedure requires a better understanding. This study aimed at developing a method to monitor the cement flow in a vertebral body and its mechanical effect. Materials and Methods. Eight fresh frozen human cadaveric vertebrae were prepared for augmentation by performing a bitrans- or bipedicular approach. Following they were XTremeCT-scanned (Scanco, Switzerland) at a nominal resolution of 82µm. A custom made setup enabled to fix the vertebrae in the CT bore (Siemens Emotion6) centrically. Bone cement (Vertecem V+, Synthes GmbH, Switzerland) was injected monopedicularly via a syringe driver (Harvard Apparatus, USA). Injection forces were recorded through a load cell (Type 9211, Kistler Instrumente AG, Switzerland) placed on the driver. Either a custom PEEK cannula or a trocar was inserted into each pedicle of a
Summary Statement. Burst fractures were simulated in vitro on human cadaveric spine segments. Displacement of the facet joints and pedicles were measured throughout the fracture process showing how these bony structures behave when an impact load is delivered. Introduction. Burst fractures account for almost 30% of all spinal injuries, which may result in severe neurological deficit, spinal instability and hence life impairment. 1. The onset of the fracture is usually traumatic, caused by a high-energy impact loading. Comminution of the endplates and vertebral body, retropulsion of fragments within the canal and increase of the intrapedicular distance are typical indicators of the injury. Experimental and numerical studies have reported strain concentration at the base of the pedicles, suggesting that the posterior processes play a fundamental role in the fracture initiation. 2,3. However, little is known about the dynamic behaviour of the
Summary Statement. From a mechanical point of view, the clinical use of pedicle screws in the atlas is a promising alternative to lateral mass screws due to an increased biomechanical fixation. Introduction. The most established surgical technique for posterior screw fixation in the atlas (C1) is realised by screw placement through the lateral mass [1]. This surgical placement may lead to extended bleeding from the paravertebral venous plexus as well as a violation of the axis (C2) nerve roots [1]. Using pedicle screws is an emerging technique which utilises the canal passing through the posterior arch enabling the use of longer screws with a greater contact area while avoiding the venous plexus and axis nerve roots. The aim of this ex vivo study was to investigate if pedicle screws in C1 bear the potential to replace the more common lateral mass screws. Therefore, the comparative biomechanical fixation strengths in terms of cycles to failure, stiffness, and removal torque were investigated. Methods. Nine C1 cadaveric vertebrae from donors aged 58.0 ± 11.1 years were separated, CT scanned (Mx8000 IDT 16, Philips Healthcare, DA Best, The NL) with a phantom, and stored at −22°C. Each
Summary Statement. It is now possible to diagnose osteoporosis using incidental abdominal CT scans; applying this approach to fractures of the cervical spine demonstrates levels of osteoporosis in patients over 65. Introduction. Recently published data now makes it possible to screen for osteoporosis in patients who, in the course of their hospital stay, have had Computed Tomography (CT) scans of their abdomen for reasons other than direct imaging. This is as a result of CT derived bone mineral density (BMD) in the first lumbar
Clinical investigations show that the cervical spine presents wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. The magnitude and scope of cervical diseases, including disc degeneration, stenosis, and spondylolisthesis, constitute serious health and socioeconomic challenges that continue to increase along with the world”s growing aging population. Although complex exact finite element (FE) modeling is feasible and reliable for biomechanical studies, its clinical application has been limited as it is time-consuming and constrained to the input geometry, typically based on one or few subjects. The objective of this study was twofold: first to develop a validated parametric subject-specific FE model that automatically updates the geometry of the lower cervical spine based on different individuals; and second to investigate the motion patterns and biomechanics associated with typical cervical spine diseases. Six healthy volunteers participated in this study upon informed consent. 26 parameters were identified and measured for each