AO Spine Reference Centre & Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Traumatic spinal cord injury (SCI) is a devastating condition with no curative therapy. Pro-inflammatory therapy has been suggested recently to try and reduce the inhibitory glial scar and promote neural regeneration and healing. The aim of this study is to investigate the potential of sustained delivery of angiogenic/pro-inflammatory growth factors to reduce the secondary degeneration after spinal cord injury. Adult male Wistar Kyoto rats (200-300g; 12-16weeks old) were subjected to cord hemisections via a T10 laminectomy. Animals were randomised to treatment or control groups after the spinal cord injury had been induced. Treatment consisted of implantation of a mini-osmotic pump capable of delivering 5 micrograms
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus phenotype in different animal models and in
humans and integrates their findings with the anatomical and physiological
differences between these species. Understanding this phenotype
is paramount to guarantee that implanted cells restore the native
functions of the intervertebral disc. Cite this article: