Advertisement for orthosearch.org.uk
Results 1 - 20 of 278
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims. A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. Methods. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups. Results. Medial tibial fractures occurred after surgery in 15 patients (15 OUKAs) in the conventional group, but only one patient (one OUKA) had a tibial fracture after surgery in the varus group. This difference was significant (6.9% vs 1.1%; p = 0.029). The mean posterior KCD was significantly shorter in the conventional group (5.0 mm (SD 1.7)) than in the varus group (6.1 mm (SD 2.1); p = 0.002). Conclusion. In OUKA, the distance between the keel and posterior tibial cortex was longer in our patients with slight varus alignment of the tibial component, which seems to decrease the risk of postoperative tibial fracture. Cite this article: Bone Joint J 2022;104-B(10):1118–1125


Aims

The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral.

Methods

The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2021
Glenday J Gonzalez FQ Wright T Lipman J Sculco P Vigdorchik J
Full Access

Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the femoral resection accounts for additional 2° varus). The baseplate was modeled as solid titanium (E=114.3 GPa; v=0.33). The pegs and a 1.2 mm layer on the bone-contact surface were modeled as 3D-printed porous titanium (E=1.1 GPa; v=0.3). Bone material properties were non-homogeneous, determined from the CT scans using relationships specific to the proximal tibia. [2,4]. The bone-implant interface was modelled as frictional with friction coefficients for solid and porous titanium of 0.6 and 1.1, respectively. The tibia was fixed 77 mm distal to the resection. For mechanical alignment, instrumented TKR loads previously measured in vivo. [5]. were applied to the top of the baseplate throughout level gait in 2% intervals (Fig.1a). For varus alignment, the varus/valgus moment was modified to match the ratio of medial-lateral force distribution from Smith et al. [1]. (Fig.1b). Results. For both alignments and all bones, the largest micromotion and amount of bone at risk of failure occurred during mid stance, at 16% of gait (Figs.2,3). Peak micromotion, located at the antero-lateral edge of the baseplate, was 153±32 µm and 273±48 µm for mechanical and varus alignment, respectively. The area of the baseplate with micromotion above 40 µm (the threshold for bone ingrowth. [3]. ) was 28±5% and 41±4% for mechanical and varus alignment, respectively. The amount of bone at risk of failure at the bone-implant interface was 0.5±0.3% and 0.8±0.3% for the mechanical and varus alignment, respectively. Discussion. The peak micromotion and the baseplate area with micromotion above 40 µm increased with varus alignment compared to mechanical alignment. Furthermore, the amount of bone at risk of failure, although small for both alignments, was greater for varus alignment. These results suggest that varus alignment, consisting of a combination of femoral and tibial alignment, may negatively impact bone ingrowth and increase the risk of bone failure for cementless tibial baseplates of this TKR design


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 65 - 65
1 Oct 2020
Abhari S Hsing T Malkani M Smith AF Smith LS Malkani AL
Full Access

Introduction. Mechanical axis limb alignment in total knee arthroplasty (TKA) has demonstrated excellent long-term survivorship; however, patient satisfaction continues to demand improvement. Alternative emerging alignment concepts including kinematic and tibial constitutional varus have been introduced but remain controversial. The purpose of this study was to evaluate outcomes and patient satisfaction following TKA with tibial components placed in constitutional varus alignment. Methods. This was a retrospective cohort analysis from a total joint registry of 114 patients with preoperative varus deformity who underwent primary TKA with tibial component placed in 1–3 degrees of constitutional varus. The group included 59 males (52%) and 55 (48%) females with a mean age of 67 years (range 43 – 85) and mean BMI of 32.0 kg/m. 2. (range 21 – 51 kg/m. 2. ) with a minimum 1 year follow-up. Patients were stratified into 3 groups based on the preoperative varus alignment: Group A between 1°- 5° varus (43 knees), Group B between 6°- 10° (56 knees), and Group C greater than 10° (16 knees). The target constitutional tibial varus alignment was selected based on the extent of the patient's deformity. Results. The average overall patient satisfaction was 4.7 on a 5-point Likert scale with 93% being either very satisfied or satisfied. Group A had the highest overall patient satisfaction of 95% followed by Group B (93%) and Group C (88%). Mean Forgotten Joint Score (FJS-12) for the combined groups was 86, mean KOOS Jr. score 72, mean WOMAC score 90, mean Knee Society (KS) Knee Score 93 and mean KS Function Score was 85. Conclusion. The push for more patient centered outcome measures drives the pursuit of improving patient satisfaction in addition to traditional outcome measures. Tibial components placed in constitutional varus in this study demonstrated excellent patient satisfaction and improvement in knee function following TKA


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs. Cite this article: Bone Joint J 2024;106-B(10):1059–1066


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 22 - 22
1 May 2019
Takada R Whitehouse S Hubble M Wilson M Howell J Timperley A Kassam A
Full Access

Introduction. Varus alignment of the femoral component in total hip arthroplasty (THA) is thought to be a risk factor for implant loosening and early revision surgery. The purpose of this study was to evaluate whether the Exeter stem tolerates varus alignment and assess if this theoretical malalignment has an influence on clinical outcomes. Methods. A total of 4126 consecutive THAs were reviewed for patients between 2006 and 2012 to allow for a minimum five-year follow-up. To determine the effects of the stem alignment on results, the hips were classified into 3 groups on the basis of stem alignment in initial postoperative anteroposterior radiographs. The alignment of the stem was defined as neutral, valgus (≥ 3° of lateral deviation), or varus (≥ 3° of medial deviation). The primary outcome was all cause revision with patient related outcomes assessed with Oxford hip score pre and post-operatively. Results. The mean follow-up period was 8.6 years. 3803 (92.2%), 48 (1.2%), and 275 (6.7%) hips were assessed as neutral, valgus, and varus alignment, respectively. Assessment of outcomes showed that 75 revision surgeries (1.8%) were performed during follow-up for a variety of causes but there was no significant difference in the revision rate among the 3 alignment groups. No stems were revised for aseptic loosening in any of the three groups. Oxford Hip scores were obtained at a mean of 4.6 years post-operatively and no significant difference in patient reported outcome was identified between the different alignment groups. Conclusion. This study suggests that the Exeter stem tolerates varus alignment well with no demonstrable effect on revision rate or patient reported outcome. This tolerance of malposition compared to the negative results reported in the literature with other stem designs can be of reassurance to surgeons using the Exeter system


Bone & Joint Research
Vol. 10, Issue 3 | Pages 173 - 187
1 Mar 2021
Khury F Fuchs M Awan Malik H Leiprecht J Reichel H Faschingbauer M

Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and varus alignments, and potential planning of partial knee arthroplasty. Methods. We retrospectively reviewed 639 subjects, aged 45 to 79 years, in the Osteoarthritis Initiative (OAI) study, who had symptomatic knees with Kellgren and Lawrence grade 2 to 4. Knees were categorized as neutral, valgus, and varus knees by measuring hip-knee-angles on hip-knee-ankle radiographs. Femorotibial JSW was measured on posteroanterior SF radiographs using a special software. The femorotibial compartment was divided into 16 subregions, and MR-tomographic measurements of cartilage volume, thickness, and subchondral bone area were documented. Linear regression with adjustment for age, sex, body mass index, and Kellgren and Lawrence grade was used. Results. We studied 345 neutral, 87 valgus, and 207 varus knees. Radiological JSW narrowing was significantly (p < 0.01) associated with cartilage volume and thickness in medial femorotibial compartment in neutral (r = 0.78, odds ratio (OR) 2.33) and varus knees (r = 0.86, OR 1.92), and in lateral tibial subregions in valgus knees (r = 0.87, OR 3.71). A significant negative correlation was found between JSW narrowing and area of subchondral bone in external lateral tibial subregion in valgus knees (r = −0.65, p < 0.01) and in external medial tibial subregion in varus knees (r = −0.77, p < 0.01). No statistically significant correlation was found in anterior and posterior subregions. Conclusion. SF radiographs can be potentially used for initial detection of cartilage degeneration as assessed by MRI in medial and lateral but not in anterior or posterior subregions. Cite this article: Bone Joint Res 2021;10(3):173–187


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 62 - 62
1 Dec 2016
Matlovich N Lanting B MacDonald S Teeter M Howard J
Full Access

The concept of constitutional varus and controversy regarding placing the total knee arthroplasty (TKA) in a neutral versus physiologic alignment in varus osteoarthritic (OA) patients is an important current discussion. However, the physiologic mechanical alignment of a varus OA knee is unknown and the relative contribution of the femur and tibia to the mechanical axis is unknown. The goal of this study was to determine and analyse the physiologic mechanical axis of medial OA knees. Plain radiographs of the knee and full-leg standing radiographs of 1558 patients were reviewed for inclusion criteria; 313 patients with a non-arthritic knee and a contralateral varus end-stage OA knee were analysed in the coronal plane. The Hip-Knee-Ankle (HKA), Condylar-Hip (CH)(femoral), Condylar-Plateau (CP) (intra-articular) and Plateau-Ankle (PA)(tibial) angles were measured for both the arthritic and non-arthritic/physiologic knee. The relationship and contribution of all angles was analysed for every 2° degrees of progressive varus: from 4° valgus to 8° varus. The proportion of patients with constitutional varus was also determined for the sample population and correlated with increasing HKA. The mean CH (femoral) angle was valgus in all groups and decreased with progressive varus alignment (p< 0.0001), ranging from 3.8° ± 1.0° with HKA of 2–4° valgus, to 0.1° ± 1.5° with HKA of 6–8° varus. The mean PA (tibial) angle was varus in all groups and decreased from valgus to progressively varus alignment (p p<0.0001), ranging from 0.78° ± 1.4° with HKA 2–4° valgus, to 5.6° ± 1.9° with HKA 6–8° varus. The CP angle showed no difference between all groups (p=0.3). Forty five percent of males and 22% of females with arthritic HKA in varus alignment were found to have constitutional varus. Correlation of unilateral arthritic knees to the unaffected, physiologic aligned knee using full-leg radiographs indicates that it may be possible to understand the patient's physiologic, pre-arthritic coronal plane alignment. The mechanical axis of physiologic knees in a unilateral varus OA population demonstrates a variable contribution of the femur (CH) and tibia (PA) from overall valgus to varus alignment. In addition, a significant proportion of the sample population possessed constitutional varus. This may provide important information regarding the placement of physiologic TKA's and direct future research questions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 64 - 64
1 Oct 2020
Moskal JT
Full Access

Introduction. Malalignment of total knee arthroplasty components may affect implant function and lead to decreased survival, regardless of preferred alignment philosophy – neural mechanical axis restoration or kinematic alignment. A common technique is to set coronal alignment prior to adjusting slope. If the guide is not maintained in a neutral position, adjustment of the slope may alter coronal alignment. Different implant systems recommend varying degrees of slope for ideal function of the implant, from 0–7°. The purpose of this study was to quantify the change in coronal alignment with increasing posterior tibial slope comparing two methods of jig fixation. Methods. Prospective consecutive series of 100 patients undergoing total knee arthroplasty using computer navigation. First cohort of 50 patients had extramedullary cutting jig secured distally with ankle clamp and proximally with one pin and a second cohort of 50 patients with the jig secured distally with ankle clamp and proximally with two pins. The change in coronal alignment was recorded with each degree of increasing posterior slope from 0–7° using computer navigation. Mean coronal alignment and change in coronal alignment was compared between the two cohorts. Results. Utilizing one pin to secure the jig, all osteotomies drifted into increased varus with an average coronal alignment of 2.38° varus (range 0.5–4.5°varus) at 7° posterior slope with an average change of 0.34° in coronal alignment per degree increase of posterior slope. Utilizing two pins to secure the jig showed a propensity to drift into valgus with an average coronal alignment of 0.22° valgus (range 1.0° varus − 1.5° valgus) at 7° posterior slope with an average change of 0.04° in coronal alignment per degree increase of posterior slope. The observed changes in coronal alignment between the two cohorts of patients were significantly different at all recorded levels of posterior slope. Conclusion. In this study, when one pin is utilized to secure the jig increasing posterior slope resulted in varus alignment with 12.0% of patients having greater than a 3 degree increase in varus at 7 degrees posterior slope compared to zero subjects in the group where the jig was secured with two pins. In the single pin group patients started to fall outside of the ±3° safe zone for coronal alignment at 4° of posterior slope. There were no patients in the two-pin cohort that fell outside of the ±3° safe zone for coronal alignment. Excessive varus alignment may result in decreased survivorship when using extramedullary jig attached distally with ankle clamp distally and proximally with one pin. Use of more than one pin and computer navigation are beneficial to prevent deviation from desired coronal alignment in systems with increased posterior slope. Verification of tibial cut intra-op is critical, especially if using one pin fixation with extramedullary jig. The observed relationship may help to explain why alignment of TKA is more accurate with computer navigation and new mid-term studies are demonstrating superior survivorship and outcomes in patients who underwent total knee arthroplasty with computer navigation, in certain cohorts of patients especially < 65 years


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 131 - 131
1 Jan 2016
Fitzpatrick CK Clary C Nakamura T Rullkoetter P
Full Access

Introduction. The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain. Methods. A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1). Results. HKA angle has a greater influence on kinematics, particularly PF medial-lateral (M-L) translation in early flexion and TF internal-external (I-E) rotation; at 60° flexion change in TF I-E rotation due to HKA angle was 12.4° compared to change due to component V-V alignment of 2.3° (Figure 1). Component alignment was the main factor in overall TF loads; varus component alignment increased the medial force, external torque and valgus torque acting on the insert. Shear force at the bone-implant interface increased by 15% (∼90N) with varus component rotation of 7°. Varus component alignment increased forces in the lateral structures and reduced forces in the medial structures (Figure 2). Both valgus HKA angle and varus component alignment altered M-L load distribution by reducing medial forces and increasing lateral forces (Figure 3). Discussion. Placement of TKA components in anatomic alignment has potential to better integrate the implants with the soft-tissues of the joint and may better reproduce natural kinematics. However, varus component alignment in conjunction with valgus HKA limb alignment substantially alters M-L distribution of load across the condyles, increasing the load on the lateral condyle. Varus component alignment will result in load distributions which are different from their mechanically aligned counterparts. As such, pre-clinical evaluation of components used in varus alignment should ensure that components are robust to loading conditions which will be encountered across the range of TKA patient HKA alignments


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 35 - 35
1 Dec 2021
Wang K Kenanidis E Miodownik M Tsiridis E Moazen M
Full Access

Abstract. Objectives. Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA. Methods. Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter. Results. Cemented constructs had lower strain on the implant neck, and higher overall stiffness and strain on bone compared to uncemented THA. Strain on the bone increased further down the shaft of the femoral diaphysis, and with progressing bone defect severity in all stem alignment cases. Highest strain on the femur was found at B2 in all stem alignment and bone defect models. Varus alignment showed higher overall femoral strain in both fixation methods. Interestingly, in uncemented models, highest strain was shown on femoral bone proximally (B1-B2) in varus alignment, but distally (B3) in neutral alignment. Conclusion. Varus stem alignment showed overall higher strain on femur compared to neutral and valgus. This highlights the crucial role of stem alignment in long term outcomes of THA. Differences between the two stem types should be taken in consideration when interpreting results from this study


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 25 - 25
1 Nov 2021
Alpaugh K Chiu Y Zlotnicki J Bendich I Della Valle A Bostrom M Gausden E
Full Access

Known risk factors for early periprosthetic femur fracture (PFF) following total hip arthroplasty (THA) include poor bone quality, surgical approach and cementless implants. The association between femoral component size and alignment and the risk of early PFF is not well described. We evaluated radiographic parameters of femoral component sizing and alignment as risk factors for early PFF. From 16,065 primary cementless THA, we identified 66 cases (0.41%) of early PFF (<90 days from index THA) at a single institution between 2016–2020. The stem was unstable and revised in all cases. We matched 60 cases of early PFFs (2:1) to 120 controls based on femoral component model, offset, surgical approach, age, BMI, and sex. Mean age was 67 years; 60% were female. Radiographic assessment of preoperative bone morphology and postoperative femoral component parameters including stem alignment, metaphyseal fill, and medial congruence with the calcar. A multivariable logistic regression was built to identify radiographic risk factors associated with early PPF. Markers of poor preoperative bone quality including canal calcar ratio (p=0.003), canal flare index (p<0.001), anteroposterior canal bone ratio (CBR) (p<0.001) and lateral CBR (p<0.001) were statistically associated with PFF. Valgus alignment (23% versus 12%) (p<0.001) was more prevalent in the PFF group compared to controls, as well as varus alignment of the implant (57% versus 43%). Distance between the medial aspect of the implant and the calcar was greater in cases of PFF (2.5 mm versus 1.4 mm) (p<0.001). Multivariate analysis demonstrated that valgus implant alignment (Odds Ratio (OR) 5) and medial implant-calcar incongruity (OR 2) increased the risk of early PFF. Medial implant-calcar incongruity and valgus alignment of the femoral component were risk factors for early PFF following cementless THA after controlling for age, sex, BMI, approach, proximal femoral morphology, and implant design


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 26 - 26
1 Aug 2013
Hobbs H Magnussen R Demey G Lustig S Servien E Neyret P
Full Access

Background:. Appropriate positioning of total knee arthroplasty (TKA) components is a key concern of surgeons. Post-operative varus alignment has been associated with poorer clinical outcome scores and increased failure rates. However, obtaining neutral alignment can be challenging in cases with significant pre-operative varus deformity. Questions:. 1) In patients with pre-operative varus deformities, does residual post-operative varus limb alignment lead to increased revision rates or poorer outcome scores compared to correction to neutral alignment? 2) Does placing the tibial component in varus alignment lead to increased revision rates and poorer outcome scores? 3) Does femoral component alignment affect revision rates and outcome scores? 4) Do these findings change in patients with at least 10 degrees of varus alignment pre-operatively?. Patients and Methods:. 553 patients undergoing TKA for varus osteoarthritis were identified from a prospective database. Patients were divided into those with residual post-operative varus and those with neutral post-operative alignment. Revision rates and clinical outcome scores were compared between the two groups. Revision rates and outcome scores were also assessed based on post-operative component alignment. The analysis was repeated in a subgroup of patients with at least 10 degrees of pre-operative varus. Results:. At a mean follow-up of 5.7 years (range: 2 to 19.8 years), residual varus deformity did not yield significantly increased revision rates or poorer outcome scores. Varus tibial component alignment and valgus femoral component alignment were associated with poorer outcome scores. Results were similar in the significant varus subgroup. Conclusions:. Residual post-operative varus deformity after TKA does not yield poorer clinical results in patients with pre-operative varus deformities, providing tibial component varus is avoided


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 143 - 143
1 Jun 2012
Matsumoto T Kubo S Muratsu H Ishida K Takayama K Matsushita T Tei K Kurosaka M Kuroda R
Full Access

Using a tensor for total knee arthroplasty (TKA) that is designed to facilitate soft tissue balance measurements with a reduced patello-femoral (PF) joint, we examined the influence of pre-operative deformity on intra-operative soft tissue balance during posterior-stabilized (PS) TKA. Joint component gap and varus angle were assessed at 0, 10, 45, 90 and 135° of flexion with femoral trial prosthesis placed and PF joint reduced in 60 varus type osteoarthritic patients. Joint gap measurement showed no significant difference regardless the amount of pre-operative varus alignment. With the procedures of soft tissue release avoiding joint line elevation, however, intra-operative varus angle with varus alignment of more than 20 degrees exhibited significant larger values compared to those with varus alignment of less than 20 degrees throughout the range of motion. Accordingly, we conclude that pre-operative severe varus deformity may have the risk for leaving post-operative varus soft tissue balance during PS TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 97 - 97
1 May 2016
Dai Y Angibaud L Harris B Gulbransen S Begin D
Full Access

Introduction. Evaluations of Computer-assisted orthopaedic surgery (CAOS) systems generally overlooked the intrinsic accuracy of the systems themselves, and have been largely focused on the final implant position and alignment in the reconstructed knee [1]. Although accuracy at the system-level has been assessed [2], the study method was system-specific, required a custom test bench, and the results were clinically irrelevant. As such, clinical interpolation/comparison of the results across CAOS systems or multiple studies is challenging. This study quantified and compared the system-level accuracy in the intraoperative measurements of resection alignment between two CAOS systems. Materials and Methods. Computer-assisted TKAs were performed on 10 neutral leg assemblies (MITA knee insert and trainer leg, Medial Models, Bristol, UK) using System I (5 legs, ExactechGPS®, Blue-Ortho, Grenoble, FR) and System II (5 legs, globally established manufacturer). The surgeries referenced a set of pre-defined anatomical landmarks on the inserts (small dimples). Post bone cut, the alignment parameters were collected by the CAOS systems (CAOS measured alignment). The pre- and post- operative leg surfaces were scanned, digitized, and registered (Comet L3D, Steinbichler, Plymouth, MI, USA; Geomagic, Lakewood, CO, USA; and Unigraphics NX version 7.5, Siemens PLM Software, Plano, TX, USA). The alignment parameters were measured virtually, referencing the same pre-defined anatomical landmarks (baseline). The signed and unsigned measurement errors between the baseline and CAOS measured alignment were compared between the two CAOS systems (significance defined as p<0.05), representing the magnitude of measurement errors and bias of the measurement error generated by the CAOS systems, respectively. Results. The measurement errors are presented [Table 1]. For unsigned measurement error, System II was higher in the tibial varus/valgus alignment and posterior slope (p≤0.01), and lower in the femoral varus/valgus alignment (p=0.03), compared to System I [Fig. 1]. System II exhibited higher error bias towards tibial varus alignment (up to 2.59°), more posterior slope (up to 1.41°), and more femoral hyper extension (up to 1.6°) than System I (p<0.01) [Fig. 1]. The mean signed and unsigned errors were generally less than 1°, except for System II in the measurement of tibial varus/valgus alignment (signed and unsigned mean errors=1.93°). Discussion. This study reported system-dependent bias and variability associated with intraoperative measurements of alignment parameters during TKA. The results showed that System I generally had lower variability and less bias than System II. Although the majority of the significant differences found were clinically irrelevant (<1° in means), System II was notably shown to produce on average ∼2° measurement errors in tibial varus/valgus alignment biased towards varus. Intra-operative measurement of surgical resection parameters during imageless computer-assisted TKA surgery is a critical step, in which a surgeon directly relies on the real-time data to prepare the bony resections and check the final realized cuts. Clinical-level accuracy in alignment outcomes has been shown to be system-dependent [2], this study further suggested there are differences in system-level accuracy between CAOS systems


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 25 - 25
1 May 2016
Seo J Yoo O In Y Kang B Sun D Kim Y
Full Access

Introduction. Knee joint should be aligned for reconstruction of the function in Total Knee Replacement(TKR). Although a surgeon try to correct the alignment of a knee joint, sometimes varus/valgus alignment has been tried in order to reconstruct function of knee joint. As a result, the varus or valgus alignment affects to ligaments and soft tissue, and the contact condition is changed between femoral component and tibial insert. One of important factor, wear characteristics of an implant can be changed due to the contact condition. In this study, we performed static contact tests from extension to flexion in varus and valgus to define the effect to contact condition when the alignment is varus or valgus. Methods. LOSPA TKR femoral component #6 and Tibial insert #5 manufactured by Corentec Co., Ltd. were used as test specimens. The tests have performed with adapting ASTM F2777–10 ‘Standard Test Method for Evaluating Knee Bearing (Tibial Insert) Endurance and Deformation under High Flexion’. The test set like as Fig. 1. The load is applied at 7:3 ratio of lateral-medial by adapting gait analysis. The 5° of jig is used to compare the result in neutral, varus and valgus. The fuji films were used in tests were scanned, and the results were analyzed the compressed area and contact stress as angles of flexion in neutral stance and varus/valgus from scanning. The tests were performed 5 times per each for a reliability. Results. The results of compressed area became decreasing as the angle of flexion was increased. The compressed areas in varus alignment was little smaller than the results in varus. The compressed areas in neutral stance were the greatest in all results. (Fig. 2.) There were little differences between the results in varus and valgus in view point of peak contact stress. (Fig. 3). Discussion. Because the neutral stance makes the compressed area become more increasing than varus/valgus alignment, so that the lowest contact stress is induced between femoral component and Tibial insert. There is little difference between varus and valgus in viewpoint of peak contact stress if the varus/valgus alignment is not excess. It is considered that the alignment is tried to correct because low contact stress makes wear improve


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 1 - 1
7 Jun 2023
Gaston P Clement N Ohly N Macpherson G Hamilton D
Full Access

In this RCT the primary aim was to assess whether a short (125mm) Exeter V40 stem offered an equivalent hip specific function compared to the standard (150mm) stem when used for cemented total hip arthroplasty (THA). Secondary aims were to evaluate health-related quality of life (HRQoL), patient satisfaction, stem height and alignment, radiographic loosening, and complications between the two stems. A prospective multicentre double-blind randomised control trial was conducted. During a 15-month period, 220 patients undergoing THA were randomised to either a standard (n=110) or short (n=110) stem Exeter. There were no significant (p≥0.065) differences in preoperative variables between the groups. Functional outcomes and radiographic assessment were undertaken at 1- and 2-years. There were no differences (p=0.428) in hip specific function according to the Oxford hip score at 1-year (primary endpoint) or at 2-years (p=0.767) between the groups. The short stem group had greater varus angulation (0.9 degrees, p=0.003) when compared to the standard group and were more likely (odds ratio 2.42, p=0.002) to have varus stem alignment beyond one standard deviation from the mean. There were no significant (p≥0.083) differences in the Forgotten joint scores, EuroQol-5-Dimension, EuroQol-VAS, Short form 12, patient satisfaction, complications, stem height or radiolucent zones at 1 or 2-years between the groups. The Exeter short stem offers equivalent hip specific function, HRQoL, patient satisfaction, and limb length when compared to the standard stem at 2-years post-operation. However, the short stem was associated with a greater rate of varus malalignment which may influence future implant survival