Advertisement for orthosearch.org.uk
Results 1 - 20 of 127
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 57 - 57
17 Apr 2023
Bae T Baek H Kwak D
Full Access

It is still difficult to determine an appropriate hinge position to prevent fracture in the lateral cortex of tibia in the process of making an open wedge during biplane open wedge high tibial osteotomy. The objective of this study was to present a biomechanical basis for determining the hinge position as varus deformity. T Three-dimensional lower extremity models were constructed using Mimics. The tibial wedge started at 40 mm distal to the medial tibial plateau, and osteotomy for three hinge positions was performed toward the head of the fibula, 5 mm proximal from the head of the fibula, and 5 mm distal from the head of the fibula. The three tibial models were made with varus deformity of 5, 10, 15 degrees with heterogeneous material properties. These properties were set to heterogeneous material properties which converted from Hounsfield's unit to Young's modulus by applying empirical equation in existing studies. For a loading condition, displacement at the posterior cut plane was applied referring to Hernigou's table considering varus deformity angle. All computational analyses were performed to calculate von-mises stresses on the tibial wedges. The maximum stress increased to an average of 213±9% when the varus angle was 10 degrees compared to 5 degrees and increased to an average of 154±8.9% when the varus angle was 15 degrees compared to 10 degrees. In addition, the maximum stress of the distal position was 19 times higher than that of the mid position and 5 times higher than that of the proximal position on average. Conclusion:. For varus deformity angles, the maximum stress of the tibial wedge tended to increase as the varus deformity angle increased. For hinge position of tibial wedge, maximum stress was the lowest in the mid position, while the highest in the distal position. *This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022R1A2C1009995)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2). Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 69 - 69
2 Jan 2024
Kvarda P Siegler L Burssens A Susdorf R Ruiz R Hintermann B
Full Access

Varus ankle osteoarthritis (OA) is typically associated with peritalar instability, which may result in altered subtalar joint position. This study aimed to determine the extent to which total ankle replacement (TAR) in varus ankle OA can restore the subtalar position alignment using 3-dimensional semi-automated measurements on WBCT. Fourteen patients (15 ankles, mean age 61) who underwent TAR for varus ankle OA were retrospectively analyzed using semi- automated measurements of the hindfoot based on pre-and postoperative weightbearing WBCT (WBCT) imaging. Eight 3-dimensional angular measurements were obtained to quantify the ankle and subtalar joint alignment. Twenty healthy individuals were served as a control groups and were used for reliability assessments. All ankle and hindfoot angles improved between preoperative and a minimum of 1 year (mean 2.1 years) postoperative and were statistically significant in 6 out of 8 angles (P<0.05). Values The post-op angles were in a similar range to as those of healthy controls were achieved in all measurements and did not demonstrated statistical difference (P>0.05). Our findings indicate that talus repositioning after TAR within the ankle mortise improves restores the subtalar position joint alignment within normal values. These data inform foot and ankle surgeons on the amount of correction at the level of the subtalar joint that can be expected after TAR. This may contribute to improved biomechanics of the hindfoot complex. However, future studies are required to implement these findings in surgical algorithms for TAR in prescence of hindfoot deformity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 67 - 67
2 Jan 2024
Belvedere C
Full Access

3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the inclination of the hindfoot in the frontal plane of the shank, and the distance between the ground and the metatarsal heads was calculated along with different solutions for the identification of possible calcifications. Starting with an accurate 3D reconstruction of the skeletal structures of the foot, a wide range of measurements representing the same angle of hindfoot alignment were found, some of them very different from each other. Interesting correlations were found between metatarsal height and subject age, significant in diabetic feet for the fourth and fifth metatarsal bones. Finally, CBCT allows 3D assessment of foot deformities under loaded conditions. The observed traditional measurement differences and new measurement solutions suggest that clinicians should consider carefully the anatomical and functional concepts underlying measurement techniques when drawing clinical and surgical conclusions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 97 - 97
11 Apr 2023
Milakovic L Dandois F Fehervary H Scheys L
Full Access

This study aims to create a novel computational workflow for frontal plane laxity evaluation which combines a rigid body knee joint model with a non-linear implicit finite-element model wherein collateral ligaments are anisotropically modelled using subject-specific, experimentally calibrated Holzpfel-Gasser-Ogden (HGO) models. The framework was developed based on CT and MRI data of three cadaveric post-TKA knees. Bones were segmented from CT-scans and modelled as rigid bodies in a multibody dynamics simulation software (MSC Adams/view, MSC Software, USA). Medial collateral and lateral collateral ligaments were segmented based on MRI-scans and are modelled as finite elements using the HGO model in Abaqus (Simulia, USA). All specimens were submitted varus/valgus loading (0-10Nm) while being rigidly fixed on a testing bench to prevent knee flexion. In subsequent computer simulations of the experimental testing, rigid bodies kinematics and the associated soft-tissue force response were computed at each time step. Ligament properties were optimised using a gradient descent approach by minimising the error between the experimental and simulation-based kinematic response to the applied varus/valgus loads. For comparison, a second model was defined wherein collateral ligaments were modelled as nonlinear no-compression spring elements using the Blankevoort formulation. Models with subject-specific, experimentally calibrated HGO representations of the collateral ligaments demonstrated smaller root mean square errors in terms of kinematics (0.7900° +/− 0.4081°) than models integrating a Blankevoort representation (1.4704° +/− 0.8007°). A novel computational workflow integrating subject-specific, experimentally calibrated HGO predicted post-TKA frontal-plane knee joint laxity with clinically applicable accuracy. Generally, errors in terms of tibial rotation were higher and might be further reduced by increasing the interaction nodes between the rigid body model and the finite element software. Future work should investigate the accuracy of resulting models for simulating unseen activities of daily living


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2021
Zderic I Caspar J Blauth M Weber A Koch R Stoffel K Finkemeier C Hessmann M Gueorguiev B
Full Access

Introduction and Objective. Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter. The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading. Materials and Methods. The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking. Results. Initial nail toggling of the distal tibia fragment in group 5 was significantly lower as compared with group 3 in varus (p=0.04) or with groups 2 and 4 in flexion (p≤0.02). In addition, the toggling in varus was significantly lower in group 1 versus group 4 (p<0.01). Moreover, during dynamic loading, within the course of the first 10,000 cycles the movements of the distal fragment in terms of varus, flexion, internal rotation, as well as axial and shear displacements at the fracture site, were all significantly lower in group 5 compared with group 4 (p<0.01). Additionally, group 5 demonstrated significantly lower values for flexion versus groups 2 and 3 (p≤0.04), for internal rotation versus group 1 (p=0.03), and for axial displacement versus group 3 (p=0.03). A trend to significantly lower values was detected in group 5 versus group 1 for varus, flexion and shear displacement – with p ranging between 0.05 and 0.07 – and versus group 3 for shear displacement (p=0.07). Cycles to failure were highest in group 5 with a significant difference to group 4 (p<0.01). Conclusions. From a biomechanical perspective, the novel angular stable intramedullary nail concept with integrated PEEK inlays and low-profile screws provides ameliorated resistance against nail toggling and loss of reduction under static and dynamic loading compared with other commercially available intramedullary nails used for fixation of unstable distal tibia fractures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 23 - 23
1 Mar 2021
Schopper C Zderic I Menze J Muller D Rocci M Knobe M Shoda E Richards G Gueorguiev B Stoffel K
Full Access

Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148). From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 63 - 63
1 Nov 2021
Visscher L White J Tetsworth K McCarthy C
Full Access

Introduction and Objective. Malunion after trauma can lead to coronal plane malalignment in the lower limb. The mechanical hypothesis suggests that this alters the load distribution in the knee joint and that that this increased load may predispose to compartmental arthritis. This is generally accepted in the orthopaedic community and serves as the basis guiding deformity correction after malunion as well as congenital or insidious onset malalignment. Much of the literature surrounding the contribution of lower limb alignment to arthritis comes from cohort studies of incident osteoarthritis. There has been a causation dilemma perpetuated in a number of studies - suggesting malalignment does not contribute to, but is instead a consequence of, compartmental arthritis. In this investigation the relationship between compartmental (medial or lateral) arthritis and coronal plane malalignment (varus or valgus) in patients with post traumatic unilateral limb deformity was examined. This represents a specific niche cohort of patients in which worsened compartmental knee arthritis after extra-articular injury must rationally be attributed to malalignment. Materials and Methods. The picture archiving system was searched to identify all 1160 long leg x ray films available at a major metropolitan trauma center over a 12-year period. Images were screened for inclusion and exclusion criteria, namely patients >10 years after traumatic long bone fracture without contralateral injury or arthroplasty to give 39 cases. Alignment was measured according to established surgical standards on long leg films by 3 independent reviewers, and arthritis scores Osteoarthritis Research Society International (OARSI) and Kellegren-Lawrence (KL) were recorded independently for each compartment of both knees. Malalignment was defined conservatively as mechanical axis deviation outside of 0–20 mm medial from centre of the knee, to give 27 patients. Comparison of mean compartmental arthritis score was performed for patients with varus and valgus malalignment, using Analysis of Variance and linear regression. Results. In knees with varus malalignment there was a greater mean arthritis score in the medial compartment compared to the contralateral knee, with OARSI scores 5.69 vs 3.86 (0.32, 3.35 95% CI; p<0.05) and KL 2.92 vs 1.92 (0.38, 1.62; p<0.005). There was a similar trend in valgus knees for the lateral compartment OARSI 2.98 vs 1.84 (CI −0.16, 2.42; p=0.1) and KL 1.76 vs 1.31 (CI −0.12, 1.01; p=0.17), but the evidence was not conclusive. OARSI arthritis score was significantly associated with absolute MAD (0.7/10mm MAD, p<0.0005) and Time (0.6/decade, p=0.01) in a linear regression model. Conclusions. Malalignment in the coronal plane is correlated with worsened arthritis scores in the medial compartment for varus deformity and may similarly result in worsened lateral compartment arthritis in valgus knees. These findings support the mechanical hypothesis that arthritis may be related to altered stress distribution at the knee, larger studies may provide further conclusive evidence


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 111 - 111
2 Jan 2024
Wong S Lee K Razak H
Full Access

Medial opening wedge high tibial osteotomy (MOWHTO) is the workhorse procedure for correcting varus malalignment of the knee. There have been recent developments in the synthetic options to fill the osteotomy gap. The current gold standard for filling this osteotomy gap is autologous bone graft which is associated with donor site morbidity. We would like to introduce and describe the process of utilizing the novel Osteopore® 3D printed, honeycomb structured, Polycaprolactone and β-Tricalcium Phosphate wedge for filling the gap in MOWHTO. In the advent of additive manufacturing and the quest for more biocompatible materials, the usage of the Osteopore® bone wedge in MOWHTO is a promising technique that may improve the biomechanical stability as well the healing of the osteotomy gap


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Materials and Methods. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking. Results. Initial axial stiffness was significantly higher for helical (185.6±50.1 N/mm) versus straight (56.0±14.4) plating, p<0.01. However, initial torsional stiffness in internal and external rotation remained not significantly different between the two fixation techniques (helical plating:1.59±0.17 Nm/° and 1.52±0.13 Nm/°; straight plating: 1.50±0.12 Nm/° and 1.43±0.13Nm/°), p≥0.21. Helical plating was associated with significantly higher initial interfragmentary movements under 500 N static compression compared to straight plating in terms of flexion (2.76±1.02° versus 0.87±0.77°) and shear displacement under 6 Nm static rotation in internal (1.23±0.28° versus 0.40±0.42°) and external (1.21±0.40° versus 0.57±0.33°) rotation, p≤0.01. In addition, helical plating demonstrated significantly lower initial varus/valgus deformation than straight plating (4.08±1.49° versus 6.60±0.47°), p<0.01. Within the first 10000 cycles of dynamic loading, helical plating revealed significantly bigger flexural movements and significantly lower varus/valgus deformation versus straight plating, p=0.02. No significant differences were observed between the two fixation techniques in terms of axial and shear displacement, p≥0.76. Cycles to failure was significantly higher for helical plating (13752±1518) compared to straight plating (9727±836), p<0.01. Conclusions. Although helical plating using a pre-contoured LCP-DF was associated with higher shear and flexion movements, it demonstrated improved initial axial stability and resistance against varus/valgus deformation compared to straight lateral plating. Moreover, helical plate constructs demonstrated significantly improved endurance to failure, which may be attributed to the less progressively increasing lever bending moment arm inherent to this novel fixation technique. From a biomechanical perspective, helical plating may be considered as a valid alternative fixation technique to standard straight lateral plating of unstable distal femoral fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 69 - 69
1 Dec 2020
LI Y LI L FU D
Full Access

Objective. To analyze the short-term outcome after medial open-wedge high tibial osteotomy with a 3D-printing technology in early medial keen osteoarthritis and varus malalignment. Design and Method. 32 knees(28 cases) of mOWHTO (fixation with an angular-stable TomoFix implant(Synthes)) with a 3D-printing technology combined with arhtroscopy were prospectively surveyed with regard to functional outcome(Hospital for special knee score [HSS] score). Pre- and postoperative tibial bone varus angle (TBVA), mechanical medial proximal tibial angle (MPTA), and alignment were analyzed with regard to the result. Results. 32 knees were included (28 patients; mean age 46.5±9.3 years). The follow-up rate was 100% at 1.7±0.6 years (range, 1.2–3.2 years). Pre- and postoperative mechanical tibiofemoral axis were 6.8°±2°of varus and 1.2°± 3.4° of valgus, respectively. HSS score significantly improved from 46.0±18.3 preoperatively to 84±12 at one, 80±7 at two years (P<0.01). Conclusions. Medial open-wedge high tibial osteotomy with a 3D-printing technology combined with arthroscopy in medial keen osteoarthritis and varus malalignment is an accurate and good treatment option. High preoperative TBVA and appropriate corrected angle(0–3° of valgus)) was associated with better functional outcome at final follow-up


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 70 - 70
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

Renal Osteodystrophy is a type of metabolic bone disease characterized by bone mineralization deficiency due to electrolyte and endocrine abnormalities. Patients with chronic kidney disease (CKD) are more likely to experience falls and fractures due to renal osteodystrophy and the high prevalence of risk factors for falls. Treatment involves medical management to resolve the etiology of the underlying renal condition, as well as management (and prevention) of pathological fractures. A 66-year-old female patient, with severe osteoporosis and chronic kidney disease undergoing haemodialysis, has presented with multiple fractures along the years. She was submitted to bilateral proximal femoral nailing as fracture treatment on the left and prophylactically due to pathological bone injury on the right, followed by revision of the left nail with a longer one after varus angulation and fracture distal to the nail extremity. Meanwhile, the patient suffered a pathological fracture of the radial and cubital diaphysis and was submitted to conservative treatment with cast, with consolidation of the fracture. Posteriorly, she re-fractured these bones after a fall and repeated the conservative treatment. Clinical management: There is a multidisciplinary approach to manage the chronic illness of the patient, including medical management to resolve the etiology and consequences of her chronic kidney disease, pain control, conservative or surgical fracture management and prevention of falls. The incidence of chronic renal disease is increasing and the patients with this condition live longer than previously and are more physically active. Thus, patients may experience trauma as a direct result of increased physical activity in a setting of weakened pathologic bone. Their quality of life is primarily limited by musculoskeletal problems, such as bone pain, muscle weakness, growth retardation, and skeletal deformity. A multidisciplinary approach is required to treat these patients, controlling their chronic diseases, managing fractures and preventing falls


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 63 - 63
17 Apr 2023
MacLeod A Dal Fabbro G Grassi A Belvedere C Nervuti G Casonato A Leardini A Gil H Zaffagnini S
Full Access

High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal. This clinical trial evaluated A novel custom-made HTO system – TOKA (3D Metal Printing LTD, Bath, UK) for accuracy of osteotomy correction and improvements in clinical outcome scores. The investigation was a single-arm single-centre prospective clinical trial (IRCCS Istituto Ortopedico Rizzoli; ClinicalTrials.gov NCT04574570), with recruitment of 25 patients (19M/6F; average age: 54.4 years; average BMI: 26.8), all of whom received the TOKA HTO 3D planning and surgery. All patients were predominantly diagnosed with isolated medial knee osteoarthritis and with a varus deformity under 20°. Patients were CT scanned pre- and post-operatively for 3D virtual planning and correctional assessment. All surgeries were performed by the lead clinical investigator – a consultant knee surgeon with a specialist interest in and clinical experience of HTO. On average, Knee Society Scores (KSS) improved significantly (p<0.001) by 27.6, 31.2 and 37.2 percentage points respectively by 3-, 6- and 12-months post-surgery respectively. Other measures assessed during the study (KOOS, EQ5D) produced similar increases. Our early experience using custom implants is extremely promising. We believe the reduced profile of the plate, as well as the reduced invasiveness and ease of surgery contributed to faster patient recovery, and improved outcome scores compared to conventional techniques. These clinical outcome results compare very favourably other case-series with published KOOS scores using different devices


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 35 - 35
1 Dec 2021
Wang K Kenanidis E Miodownik M Tsiridis E Moazen M
Full Access

Abstract. Objectives. Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA. Methods. Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter. Results. Cemented constructs had lower strain on the implant neck, and higher overall stiffness and strain on bone compared to uncemented THA. Strain on the bone increased further down the shaft of the femoral diaphysis, and with progressing bone defect severity in all stem alignment cases. Highest strain on the femur was found at B2 in all stem alignment and bone defect models. Varus alignment showed higher overall femoral strain in both fixation methods. Interestingly, in uncemented models, highest strain was shown on femoral bone proximally (B1-B2) in varus alignment, but distally (B3) in neutral alignment. Conclusion. Varus stem alignment showed overall higher strain on femur compared to neutral and valgus. This highlights the crucial role of stem alignment in long term outcomes of THA. Differences between the two stem types should be taken in consideration when interpreting results from this study


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 79 - 79
17 Apr 2023
Stockmann A Grammens J Lenz J Pattappa G von Haver A Docheva D Zellner J Verdonk P Angele P
Full Access

Partial meniscectomy patients have a greater likelihood for the development of early osteoarthritis (OA). To prevent the onset of early OA, patient-specific treatment algorithms need to be created that predict patient risk to early OA after meniscectomy. The aim of this work was to identify patient-specific risk factors in partial meniscectomy patients that could potentially lead to early OA. Partial meniscectomy patients operated between 01/2017 and 12/2019 were evaluated in the study (n=317). Exclusion criteria were other pathologies or surgeries for the evaluated knee and meniscus (n = 114). Following informed consent, an online questionnaire containing demographics and the “Knee Injury and Osteoarthritis Outcome Score” (KOOS) questionnaire was sent to the patient. Based on the KOOS pain score, patients were classified into “low” (> 75) and “high” (< 75) risk patients, indicating risk to symptomatic OA. The “high risk” patients also underwent a follow-up including an MRI scan to understand whether they have developed early OA. From 203 participants, 96 patients responded to the questionnaire (116 did not respond) with 61 patients considered “low-risk” and 35 “high-risk” patients. Groups that showed a significant increased risk for OA were patients aged > 40 years, females, overweight (BMI >25 kg/m2 ≤ 30 kg/m2), and smokers (*p < 0.05). The “high-risk”-follow-up revealed a progression of early osteoarthritic cartilage changes in seven patients, with the remaining nineteen patients showing no changes in cartilage status or pain since time of operation. Additionally, eighteen patients in the high-risk group showed a varus or valgus axis deviation. Patient-specific factors for worse postoperative outcomes after partial meniscectomy and indicators for an “early OA” development were identified, providing the basis for a patient-specific treatment approach. Further analysis in a multicentre study and computational analysis of MRI scans is ongoing to develop a patient-specific treatment algorithm for meniscectomy patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 36 - 36
4 Apr 2023
Pastor T Zderic I van Knegsel K Link B Beeres F Migliorini F Babst R Nebelung S Ganse B Schöneberg C Gueorguiev B Knobe M
Full Access

Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired cadaveric studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 22 - 22
17 Apr 2023
Murugesu K Decruz J Jayakumar R
Full Access

Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator. A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity. The extent of normal anatomic restoration in elbow fracture fixation determines the quality of elbow function with most common complication being elbow stiffness. Ring fixator is a non-invasive external device which provides firm stabilization of fracture while allowing for adequate soft tissue management. It provides continuous axial micro-movements in the frame which promotes callus formation while avoiding translation or angulation between the fragments. In appropriate frame design, they allow for early rehabilitation of joint where normal range of motion can be allowed in controlled manner immediately post-fixation. Functional outcome of elbow fracture from ring external fixation is comparable to ORIF due to better rehabilitation and lower complications. Ring external fixator in our patient achieved acceptable functional outcome and fracture alignment meanwhile the fracture was not complicated with common complications seen in ORIF. In conclusion, ring external fixator is as effective as ORIF in treating complex distal humeral fractures and should be considered for definitive fixation in such fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 131 - 131
11 Apr 2023
van Hoogstraten S Arts J
Full Access

An increasingly used treatment for end-stage ankle osteoarthritis is total ankle replacement (TAR). However, implant loosening and subsidence are commonly reported complications, leading to relatively high TAR failure rates. Malalignment of the TAR has often been postulated as the main reason for the high incidence of these complications. It remains unclear to what extent malalignment of the TAR affects the stresses at the bone-implant interface. Therefore, this study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. FE models of the neutrally aligned as well as malaligned CCI Evolution TAR implant (Van Straten Medical) were developed. Separate models were developed for the tibial and talar segment, with the TAR components in neutral alignment and 5° and 10° varus, valgus, anterior and posterior malalignment, resulting in a total of 9 differently aligned TAR models. Loading conditions of the terminal stance phase of the gait cycle, when the force on the ankle joint is highest (5.2x body weight), were applied. Peak and mean contact pressure and shear stress at the bone-implant interface were analyzed. Also, stress distributions on the bone-implant interface were visualized. In the neutrally aligned tibial and talar TAR models, peak contact pressures of respectively 98.4 MPa and 68.2 MPa, and shear stresses of respectively 49.3 MPa and 39.0 MPa were found. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. A maximum peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component and the highest shear stress found was 98.5 MPa for the 10° posterior malaligned talar model. Upon TAR malalignment contact stresses increase substantially, suggesting that proper orientation of the TAR is needed to minimize peak stresses on the bone-implant interface. This is in line with previous studies, which state that malalignment considerably increases bone strains, micromotion, and internal TAR contact pressures, which might increase the risk of TAR failure. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure