We report the preliminary results of a continuing prospective evaluation of a screening programme for congenital dislocation of the hip (CDH) which uses
We investigated 29 cases, diagnosed clinically as having Morton’s neuroma, who had undergone MRI and ultrasound before a neurectomy. The accuracy with which pre-operative clinical assessment, ultrasound and MRI had correctly diagnosed the presence of a neuroma were compared with one another based on the histology and the clinical outcome. Clinical assessment was the most sensitive and specific modality. The accuracy of the ultrasound and MRI was similar and dependent on size. Ultrasound was especially inaccurate for small lesions. There was no correlation between the size of the lesion and either the pre-operative pain score or the change in pain score following surgery. Reliance on single modality imaging would have led to inaccurate diagnosis in 18 cases and would have only benefited one patient. Even imaging with both modalities failed to meet the predictive values attained by clinical assessment. There is no requirement for ultrasound or MRI in patients who are thought to have a Morton’s neuroma. Small lesions, <
6 mm in size, are equally able to cause symptoms as larger lesions. Neurectomy provides an excellent clinical outcome in most cases.
We examined ten femoral veins with duplex ultrasound during total hip replacement to demonstrate the operative manoeuvres which cause venous obstruction and to assess prophylactic measures which may overcome it. Exposure of the acetabulum by distraction of the femur with a hook was less likely to occlude flow than retraction with bone levers. Adequate exposure of the femoral shaft by adduction, flexion and either internal or external rotation caused cessation of flow in all cases. In four cases an A-V Impulse System foot pump was activated during periods of stasis. In each case it overcame the obstruction and produced peak velocities which were twice that of the resting state. In five cases, towards the end of the procedure, debris was seen travelling proximally through the femoral vein.
Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in 3D ultrasound for the purpose of orthopedic fracture reduction surgery. We recently proposed a novel real-time image-processing method of bone surface extraction from local phase features of clinical 3D B-mode ultrasound data. We are presenting a computational study and outline planned future developments for integration into a computer aided orthopedic surgery framework. Our image-processing pipeline was implemented on three platforms: (1) using an existing PS extraction C++ algorithm on a dual processor machine with two Xeon x5472 CPUs @ 3GHz with 8GB of RAM, (2) using our proposed method implemented in MATLAB running on the same machine as in (1), and (3) CUDA implementation of our method on a professional GPU (Nvidia Tesla c2050).Background
Methods
Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in 3D ultrasound for the purpose of orthopaedic fracture reduction surgery. We recently proposed a novel real-time image-processing method of bone surface extraction from local phase features of clinical 3D B-mode ultrasound data. We are presenting a computational study and outline of planned future developments for integration into a computer aided orthopaedic surgery framework. Our image-processing pipeline was implemented on three platforms: (1) using an existing PS extraction C++ algorithm on a dual processor machine with two Xeon x5472 CPUs @ 3GHz with 8GB of RAM, (2) using our proposed method implemented in MATLAB running on the same machine as in (1), and (3) CUDA implementation of our method implemented on a professional GPU (Nvidia Tesla c2050). We ran these three implementations 20 times each on 128×128×128 scans of the iliac crest in live subjects and repeated the processing for 15 combinations of filter parameters. On average, the C++ implementation took 1.93s per volume, the MATLAB implementation 1.28s, and the GPU implementation 0.08s. Overall, our GPU implementation is between 15 and 25 times faster than the state-of-the-art method. Implementing our algorithm on a professional grade GPU produced dramatic computational improvements, enabling full 3D datasets to be processed in an average time of under 100ms, which, if proven in a clinical system, would allow for near real time computation. We are currently implementing our algorithm on an open research sonography platform (Ultrasonix Medical Corporation). High-powered graphic cards can easily be integrated into the open architecture of this system, thus enabling GPU computation on diagnostic medical and research ultrasound devices. We intend to use this platform within a surgical environment for accurate and automatic detection of fractures and as an integral part of our developing computer aided surgery pipeline, in which we use PS features to register intra-operative ultrasound to pre-operative computed tomography images.
The aim of this study was to investigate the agreement in interpretation of the quality of the paediatric hip ultrasound examination, the reliability of geometric and morphological assessment, and the relationship between these measurements. Four investigators evaluated 60 hip ultrasounds and assessed their quality based the standard plane of Graf et al. They measured geometric parameters, described the morphology of the hip, and assigned the Graf grade of dysplasia. They analyzed one self-selected image and one randomly selected image from the ultrasound series, and repeated the process four weeks later. The intra- and interobserver agreement, and correlations between various parameters were analyzed.Aims
Methods
We describe a method of closed, unlocked nailing for femoral fractures using ultrasound instead of an image intensifier. Radiography was used only to confirm that the guide wire had been passed into the intramedullary canal of both fragments. The method succeeded in 26 of 30 cases. The failures all occurred in fractures which could not be reduced within 20 minutes. The operating time in those nailed successfully with ultrasound control was not different from the time for 30 control cases using conventional methods with an image intensifier.
The October 2023 Children’s orthopaedics Roundup. 360. looks at: Outcomes of open reduction in children with developmental hip dislocation: a multicentre experience over a decade; A torn discoid lateral meniscus impacts lower-limb alignment regardless of age; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Consensus guidelines on the management of musculoskeletal infection affecting children in the UK; Diagnosis of developmental dysplasia of the hip by
Shoulder septic arthritis is uncommon and frequently misdiagnosed, resulting in severe consequences. This study evaluated the demographics, bacteriological profile, antibiotic susceptibility, treatment regimens, and clinical outcomes. This is a 10-year retrospective observational analysis of 30 patients (20 males and 10 females) who were treated for septic arthritis of the shoulder. The data collecting process utilised clinical records, laboratory archives, and x-ray archives. We gathered demographic information, pre- and post-intervention clinical data, serum biochemical markers, and the results of imaging examinations. All patients had a surgical arthrotomy and joint debridement in the operating room, and specimens were taken for culture and sensitivity testing. The specimens were cultivated for at least seventy-two hours. Shoulder joint ranges of motion, comorbidities, and the presence of osteomyelitis were assessed clinically to determine the outcome. All statistical analyses were conducted using the STATA 17 statistical software. Analysis of correlation between categorical variables was performed using the chi-squared test. The majority of the study patients were black Africans (97%). The age range of the group was from 8 days to 17 years. At presentation, 33% of patients had a low-grade fever, whereas the majority (60%) had normal body temperature. The average length of symptoms was 3.9 days (ranged from 1 day to 15 days), and the majority of patients had an increased white cell count (83%) and C-reactive protein (98%). There was accumulation of fluid in the joint of all individuals who received shoulder
Introduction. We aim to assess whether radiographic characteristics of the greater tuberosity fragment can predict rotator cuff tears inpatients with anterior shoulder dislocations combined with an isolated fracture of the greater tuberosity. Methods. A retrospective single-centre case series of 61 consecutive patients that presented with anterior shoulder dislocations combined with an isolated fracture of the greater tuberosity between January 2018 and July 2022. Inclusion criteria: patients with atraumatic anterior shoulder dislocation associated with an isolated fracture of the greater tuberosity with a minimum follow-up of 3-months. Exclusion criteria: patients with other fractures of the proximal humerus or glenoid. Rotator cuff tears were diagnosed using magnetic resonance or
Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus of ≥ one cortex on the 3D reconstruction and when present all achieved union. Compared to six-week radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8% sensitive and 100% specific to predict union). At 12 weeks, nine patients had bridging callus at ≥ one cortex on 3D reconstruction (100%-sensitive and 100%-specific to predict union). Presence of sonographic bridging callus on 3D reconstruction demonstrated excellent reviewer agreement on ICC at 0.87 (95% confidence interval 0.74 to 0.96). Conclusion. 3D fracture reconstruction can be created using multiple
A challenging problem in ultrasound based orthopaedic surgery is the identification and interpretation of bone surfaces. Recently we have proposed a new fully automatic ultrasound bone surface enhancement filter in the context of spine interventions. The method is based on the use of a Gradient Energy Tensor filter to construct a new feature enhancement metric, which we call the Local Phase Tensor. The goal of this study is to provide further improvements to the proposed filtering method by incorporating a-priori knowledge about the physics of
The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional
The treatment of extremity ballistic injury is challenging in that the zone of injury can be extensive and determining the surgical exposure can be difficult. We describe a method of pre-operative evaluation of the zone of injury in conjunction with the regional anesthesiologist utilizing ultrasound to determine the presence of nerve disruption. This non-invasive method of examination may elucidate whether significant nerve exists and may also serve to pinpoint the location of injury. Such information allows the surgeon to more effectively and efficiently surgically expose the zone of injury and understand the boundaries of the nerve outside the zone of injury. Moreover, such preoperative evaluation may at times obviate the need for exploratory surgery at all. It is important for the anesthesiologist and surgeon to work together with respect to the ability to both interpret the
Aims. The aim of this study was to assess the effectiveness of perioperative essential amino acid (EAA) supplementation to prevent rectus femoris muscle atrophy and facilitate early recovery of function after total knee arthroplasty (TKA). Methods. The study involved 60 patients who underwent unilateral TKA for primary knee osteo-arthritis (OA). This was a double-blind, placebo-controlled, randomized control trial with patients randomly allocated to two groups, 30 patients each: the essential amino acid supplementation (9 g daily) and placebo (lactose powder, 9 g daily) groups. Supplementation and placebo were provided from one week before to two weeks after surgery. The area of the rectus femoris muscle were measured by
Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion. Modern
Sonographic callus may enable assessment of fracture healing. The aim of this study was to establish a reliable method for three-dimensional reconstruction of sonographic callus. Patients that underwent non-operative management of displaced midshaft clavicle fractures and intramedullary nailing of tibia fractures were prospectively recruited and followed to union. Ultrasound scanning was performed at periodical time points following injury. Infra-red tracking technology was used to map each image to a three-dimensional lattice. Criteria was fist established for two-dimensional bridging callus detection in a pilot study. Using echo intensity of the
Abstract. Objectives. Three-dimensional visualisation of sonographic callus has the potential to improve the accuracy and accessibility of ultrasound evaluation of fracture healing. The aim of this study was to establish a reliable method for producing three-dimensional reconstruction of sonographic callus. Methods. A prospective cohort of ten patients with a closed tibial shaft fracture managed with intramedullary nailing were recruited and underwent ultrasound scanning at 2-, 6- and 12-weeks post-surgery. Ultrasound B-mode capture was performed using infrared tracking technology to map each image to a three-dimensional lattice. Using echo intensity, semi-automated mapping was performed by two independent reviewers to produce an anatomic three-dimensional representation of the fracture. Agreement on the presence of sonographic bridging callus on three-dimensional reconstructions was assessed using the kappa coefficient. Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus at ≥1 cortex on the three-dimensional reconstruction; when present all united. Compared to radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8%-sensitive and 100%-specific to predict union). At twelve weeks, nine patients had bridging callus at ≥1 cortex on three-dimensional reconstruction and all united (100%-sensitive and 100%-specific to predict union). Compared to radiographs, seven of the nine patients that united had bridging callus. Three-dimensional reconstruction of the anteromedial and anterolateral tibial surface was achieved in all patients, and detection of sonographic bridging callus on the three-dimensional reconstruction demonstrated substantial inter-observer agreement (kappa=0.78, 95% confidence interval 0.29–1.0, p=0.011). Conclusions. Three-dimensional fracture reconstruction can be created using multiple
Introduction: Cadaveric intervertebral discs (IVD) must perform consistently and repeatably with time and cyclic loading if the results from long experimental protocols are to be considered valid. Experiment design should take into account the potential for changes in the biomechanical properties of the intervertebral disc. Changes in the pressure distribution and stress profiles across the IVD along with variation in movement of the anterior annulus during a load cycle give a good indication as to the biomechanic status of the IVD. The purpose of this study was to assess the biomechanic response of the IVD to repeated cyclic loading, in normal, flexed and extended positions over a prolonged period. Methods: Ten multisegment cadaveric lumbar spine specimens (L3-5 or L1-3) were dissected and compressed to 1kN in 6° flexion, neutral and 4° extension. The anterior annulus was imaged during loading using ultrasound. The stress distribution along the mid-sagittal and antero-postero-lateral (APL) diameters of both discs was measured by withdrawing a miniature pressure transducer from posterior to anterior across the IVD during loading. Stress profilometry and