Advertisement for orthosearch.org.uk
Results 1 - 20 of 44
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined. . The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded. The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (. sd. 4.0) and 4.6 mm (. sd. 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (. sd. 4.6) and 6.4 mm (. sd. 4.6), respectively. Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset. Cite this article: Bone Joint J 2014;96-B:1274–81


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 89 - 89
17 Apr 2023
Alzahrani S Aljuaid M Bazaid Z Shurbaji S
Full Access

A Morel-Lavallee lesion (MLL) is a benign cystic lesion that occurs due to injury to the soft-tissue envelope's perforating vascular and lymphatic systems, resulting in a distinctive hemolymphatic fluid accumulation between the tissue layers. The MLL has the potential to make a significant impact on the treatment of orthopaedic injuries. A 79-year-old male patient community ambulatory with assisting aid (cane) known case of Diabetes mellitus, hypertension, bronchial asthma and ischemic heart disease. He was brought to the Emergency, complaining of right hip discomfort and burning sensation for the last 5 days with no history of recent trauma at all. Patient had history of right trochanteric femur fracture 3 years ago, treated with DHS in a privet service. Clinical and Radiological assessment showed that the patient mostly has acute MLL due to lag screw cut out. We offered the patient the surgical intervention, but he refused despite explaining the risks of complications if not treated and preferred to receive the conservative treatment. Compression therapy management explained to him including biker's shorts (instructed to be worn full-time a day) and regular follow up in clinic. Symptom's improvement was reported by the patient in the subsequent visits. In the polytrauma patient, a delayed diagnosis of these lesions is conceivable due to the presence of more visible injuries. It's located over the greater trochanter more commonly, but sometimes in other areas such as the lower lumbar region, the thigh, or the calf. Incorrect or delayed diagnosis and care can have unfavorable outcomes such as infection, pseudocyst development, and cosmetologically deformity. Magnetic resonance imaging (MRI) and ultrasound will aid in MLL diagnosis. However, the effectiveness of MLL therapy remains debatable. We strongly believe that the MLL caused due to tangential shear forces applied to the soft tissue leads to accumulation of the blood and/or lymph between the subcutaneous and overlying fascia and it often misdiagnosed due to other distracting injuries. Nontheless, in our case we reported MLL occur due to internal pressure on the fascia caused by cut out of DHS lag screw


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 22 - 22
1 Dec 2022
Betti V Ruspi M Galteri G Ognisanto E Cristofolini L
Full Access

The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different levels of osteotomy. To assess the variability of the femoral canal, 72 CT-scans of the lower limb were selected. A segmentation was performed to isolate the region of interest (ROI), ranging from the lesser tip of the trochanter to the 75% of the length of the femur. The canals were then sized to scale, aligned, and 16 osteotomy levels were simulated, starting from a section corresponding to 25% of the ROI and up to the distal section. For each level, the main modes of variations of the femoral canal were identified through Principal Component Analysis (PCA), thus generating the mean geometry and the extreme shapes (±2 stdev) of the principal modes of variation. The shape of the canals obtained from these geometries was reconstructed every 10 mm, best- fitted with an ellipse and the following parameters were evaluated: i) ellipticity, by looking at the difference between axismax and axismin; ii) curvature of the canal, calculating the arc of circumference passing through the shapes’ centroids; iii) conicity, by looking at the maximum/minimum diameter; iv) mean diameter. To understand the association between the main modes and the shape variance, these parameters were compared, for each level of osteotomy, between the two extreme geometries of the main modes of variation. Results from PCA pointed out that the first three PCs explained more than the 87% of the total variance, for each level of simulated osteotomy. By analysing the extreme geometries for a distal osteotomy (e.g. 80% of the length of the canal), the first PC was associated to a combination of ROC (var%=41%), conicity (var%=28%) and ellipticity (var%=7%). PC2 was still associated with the ROC (var%=16%), while PC3 turned out to be associated with the diameter (var%=38%). Through the SSM presented in this study, a quantitatively evaluation of the deformation of the intramedullary canal has been made possible. By analysing the extreme geometries obtained from the first three modes of variance, it is clear that the first three PCs accounted for the variations in terms of curvature, conicity, ellipticity and diameter of the femoral canal with a different weight, depending on the level of osteotomy. Through this work, it was also possible to parametrize these variations according to the level of excision. The results given for the segment corresponding to the 80% of the length of the canal showed that, at that specified level, the ROC, conicity and ellipticity were the anatomical parameters with the highest range of variability, followed by the variation in terms of diameter. Therefore, the analysis carried out can provide information about the relevance of these parameters depending on the level of osteotomy suffered by the amputee. In this way, optimal strategies for the design and/or customization of osteo-integrated stems can be offered depending on the patient's residual limb


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 35 - 35
1 Dec 2021
Wang K Kenanidis E Miodownik M Tsiridis E Moazen M
Full Access

Abstract. Objectives. Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA. Methods. Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter. Results. Cemented constructs had lower strain on the implant neck, and higher overall stiffness and strain on bone compared to uncemented THA. Strain on the bone increased further down the shaft of the femoral diaphysis, and with progressing bone defect severity in all stem alignment cases. Highest strain on the femur was found at B2 in all stem alignment and bone defect models. Varus alignment showed higher overall femoral strain in both fixation methods. Interestingly, in uncemented models, highest strain was shown on femoral bone proximally (B1-B2) in varus alignment, but distally (B3) in neutral alignment. Conclusion. Varus stem alignment showed overall higher strain on femur compared to neutral and valgus. This highlights the crucial role of stem alignment in long term outcomes of THA. Differences between the two stem types should be taken in consideration when interpreting results from this study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 142 - 142
1 Nov 2021
Negri S Wang Y Lee S Qin Q Cherief M Hsu GC Xu J Tower RJ Levi B Levin A James A
Full Access

Introduction and Objective. Heterotopic ossification is the formation of extraskeletal mineralized tissue commonly associated with either trauma or surgery. While several mouse models have been developed to better characterize the pathologic progression of HO, no model currently exists to study HO of the hip, the most common location of acquired HO in patients. Owing to the unique biological mechanisms underpinning the formation of HO in different tissues, we sought to develop a model to study the post-surgical HO of the hip. Materials and Methods. Wild-type mice C57BL/6J mice were used to study the procedure outcomes, while Pdgfra-CreERT2;mT/mG and Scx-GFP reporter animals were used for the lineage tracing experiments (total n=16 animals, male, 12 weeks old). An anterolateral approach to the hip was performed. Briefly, a 2 cm incision was made centered on the great trochanter and directed proximal to the iliac crest and distally over the lateral shaft of the femur. The joint was then reached following the intermuscular plane between the rectus femoris and gluteus medius muscles. After the joint was exposed, the articular cartilage was removed using a micropower drill with a 1.2 mm reamer. The medius gluteus and superficial fascia were then re-approximated with Vicryl 5-0 suture (Ethicon Inc, Somerville, NJ) and skin was then closed with Ethilon 5-0 suture (Ethicon Inc). Live high resolution XR imaging was performed every 2 wks to assess the skeletal tissues (Faxitron Bioptics, Tucson, AZ). The images were then scored using the Brooker classification. Ex-vivo microCT was conducted using a Skyscan 1275 scanner (Bruker-MicroCT, Kontich, Belgium). 3D reconstruction and analysis was performed using Dragonfly (ORS Inc., Montreal, Canada). For the histological analysis of specimens, Hematoxylin and Eosin (H&E), modified Goldner's Trichrome (GMT) stainings were performed. Reporter activity was assessed using fluorescent imaging. Results. Substantial periarticular heterotopic bone was seen in all cases. A periosteal reaction and an initial formation of calcified tissue within the soft tissue was apparent starting from 4 wks after surgery. By XR, progressive bone formation was observed within the periosteum and intermuscular planes during the subsequent 8 weeks. Stage 1 HO was observed in 12.5% of cases, stage 2 in 62.5% of cases, and stage 3 HO in 25% of cases. 3D microCT reconstructions of the treated hip joints demonstrated significant de novo heterotopic bone in several location which phenocopy human disease. Heterotopic bone was observed in an intracapsular location, periosteal location involving the iliac bone and proximal femur, and intermuscular locations. Histological analyses further confirmed these findings. To assess the cells which gave rise to HO in this model, an inducible PDGFRα and constitutive Scx-GFP reporter mice were used. A dramatic increase in mGFP reporter activity was noted PDGFRα within the HO injury site, including in areas of new cartilage and bone formation. Scx-associated reporter activity increased in the soft tissue and periosteal periacetabular areas of injured hips. Conclusions. HO has a diverse set of pathologies, of which joint associated HO after elective surgery is the most common. Here, we present the first mouse model of hip dislocation and acetabular reaming that mimics elements of human periarticular HO. The diverse locations of HO after acetabular reaming (intracapsular, intermuscular and periosteal) suggests the activation of different and specific HO program after surgery. Such a field effect would be consistent with local trauma and inflammation, which is a well-studied contributor to HO genesis. Not surprisingly, joint-associated HO significantly derives from PDGFRα-expressing cells, which has been shown to similarly give rise to intramuscular and intratendinous HO


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 53 - 53
1 Jul 2014
Wada H Mishima H Hyodo K Yamazaki M
Full Access

Summary Statement. We used three-dimensional software to assess different anatomic variables in the femur. The canal of Femur twisted slightly below the lesser trochanter in cases with a larger angle of anteversion. Introduction. Accurate positioning of the joint prosthesis is essential for successful total hip arthroplasty (THA). To aid in tailoring of the prosthesis, we used three-dimensional software to assess different anatomic variables in the femur. Patients & Methods. We used CT imaging data of the unaffected normal side of the 25 patients (22 females, age range 30 to 81 years) who underwent THA in 2012 in our hospital. The femur was reconstructed from CT data and measured using three-dimensional modeling software (Mimics 16.0 Materialise, Leuven, Belgium). We measured ellipse fitting to the medullary canal in the axial plane of the femur at 20-mm intervals. The angle between the major axis of those ellipses and the axis of the femoral neck was measured and expressed as the canal rotation. The distance between the lesser trochanter and the center of the femoral head was measured along the Z axis. Results. The major axes of the ellipses direct to medial, front and medial side in the level of epiphysis, above isthmus and distal portion respectively in all cases. The maximum rotated level was above isthmus. The rotation angle in the proximal portion ranged from 36 to 84 degrees (mean, 60.6 degrees, SD ± 12.1). The rotation angle of the distal portion ranged from 71 to 95 degrees (mean, 86.1 degrees, SD ± 6.1). Discussion/Conclusion. The torsion of the canal varied more widely between individuals in the proximal portion than did the distal portion. In addition, the torsion of the proximal aspect, although more variable, was on average smaller when the angle of anteversion was large. Because the canal twisted slightly below the lesser trochanter in cases with a larger angle of anteversion, it is suggested that attention to the degree of anteversion of a flat prosthesis stem is warranted


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 4 - 4
1 May 2017
Medhora J Li L Hakmi A
Full Access

Background. The anterior-posterior (AP) pelvis radiograph is crucial for diagnosis of neck of femur (NOF) fractures, especially as this is one of the commonest fractures in the elderly population. Anecdotally we found that initial AP pelvis radiographs for these suspected fractures did not always exhibit the bones sufficiently. Repeat radiographs were needed, leading to delays in diagnosis, treatment, and repeated radiation exposure. Missed diagnoses can have significant consequences for this patient group. We assessed how many initial AP pelvis radiographs taken for suspected NOF fracture fitted criteria for adequate diagnostic imaging. Methods. A retrospective study was carried out assessing the initial AP pelvis radiograph done for each patient presenting to our dedicated NOF unit with suspected NOF fracture for 1st June – 31st July 2014. European Guidelines for Diagnostic Imaging were used as the benchmark. Each radiograph was scored out of six, one for each criteria fulfilled. Guidelines deemed images scoring ≤3 as inadequate. Results. 76 images were assessed with mean patient age 85 years. 51.3% of images scored ≤3 and mean score was 3.59. The least-met criterion was “sharp reproduction of sacrum and vertebral foramina” (26.3%). Crucially only 52.6% achieved “visually sharp reproduction of spongiosa, trochanters and corticalis of both femurs”, important in diagnosis of NOF fractures. Conclusion. More than half initial AP pelvis radiographs taken for suspected NOF fracture were inadequate based on European Guidelines at a dedicated NOF unit. Part of the difficulty can be attributed to challenging patient demographics, however adequate initial radiographs should be aimed for, as repeat radiographs can lead to delays in diagnosis and treatment as well as repeated radiation exposure. Missed diagnoses can have significant consequences for this patient group; we particularly recommend care to be taken to sharply visualise the trochanters and proximal femora to avoid missing subtle fractures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 111 - 111
1 Jan 2017
Menichetti A Gargiulo P Gislason M Edmunds K Hermannsson T Jonsson H Esposito L Bifulco P Cesarelli M Fraldi M Cristofolini L
Full Access

Total Hip Replacement (THR) is one of the most successful operations in all of medicine, however surgeons just rely on their experience and expertise when choosing between cemented or cementless stem, without having any quantitative guidelines. The aim of this project is to provide clinicians with some tools to support in their decision making. A novel method based on bone mineral density (BMD) measurements and assessments was developed 1) to estimate the periprosthetic fracture risk (FR) while press-fitting cementless stem; 2) to evaluate post-operative bone remodeling in terms of BMD changes after primary THR. Data for 5 out of over 70 patients (already involved in a previous study. 1. ) that underwent primary THA in Iceland were selected for developing novel methods to assess intra-operative FR and bone mineral density (BMD) changes after the operation. For each patient three CT images were acquired (Philips Brilliance 64 Spiral-CT, 120 kVp, slice thickness: 1 mm, slice increment: 0.5 mm): pre-op, 24 hours and 1 year post-operative. Pre-op CT scan was used to create 3D finite element model (Materialise Mimics) of the proximal femur. The material properties were assigned based on Hounsfield Units. Different strategies were analyzed for simulating the press-fitting operation, developing what has already been done in prior study. 1. In the finite element simulation (Ansys Workbench), a pressure (related to the implant hammering force of 9.25 kN. 2. ) was applied around the femur's hollow for the stem and the distribution of maximum principal elastic strain over the bone was calculated. Assuming a critical failure value. 3. of 7300 με, the percentage of fractured elements was calculated (i.e. FR). Post 24 hours and Post 1 year CT images were co-registrated and compared (Materialise Mimics) in order to assess BMD changes. Successively, volumes of bone lost and bone gained were calculated and represented in a 3D model. Age and gender should not be taken as unique indicators to choose between implants typologies, since also three dimensional BMD distribution along with volume of cortical bone influence the risk of periprosthetic fractures. Highest FR values were experienced in the calcar-femorale zone and in similar location on the posterior side. BMD loss volume fractions after 1 year were usually higher than BMD gain ones. Consistently with prior studies. 4. , BMD loss was mainly concentrated around the proximal end (lesser trochanter area, outer bone). If present, BMD gain occurred at the distal end (below stem's tip) or proximally (lesser trochanter area, interface contact with the stem). The use of clinical data for BMD assessments serves as an important tool to develop a quantitative method which will support surgeons in their decisions, guiding them to the optimal implant for the patient. Knowing the risk of fracture if choosing a cementless stem and being aware of how the bone will remodel around the stem in one year's time can eventually lead to reduction in revisions and increased quality of life for the patient. Further work will target analysis of a larger cohort of patients and validate FE models


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 55 - 55
1 Jan 2017
García-Rey E Gómez-Barrena E
Full Access

Although cemented fixation provides excellent results in primary total hip replacement (THR), particularly in patients older than 75 years, uncemented implants are most commonly used nowadays. We compare the rate of complications, clinical and radiological results of three different designs over 75-years-old patients. 433 hips implanted in patients over 75 years old were identified from our Local Joint Registry. Group A consisted of 139 tapered cemented hips, group B of 140 tapered grit-blasted uncemented hips and group C of 154 tapered porous-coated uncemented hips. A 28 mm femoral head size on polyethylene was used in all cases. The mean age was greater in group A and the physical activity level according to Devane was lower in this group (p<0.001 for both variables). Primary osteoarthritis was the most frequent diagnoses in all groups. The radiological acetabular shape was similar according to Dorr, however, an osteopenic-cylindrical femur was most frequently observed in group A (p<0.001). The pre- and post-operative clinical results were evaluated according to the Merle-D'Aubigne and Postel scale. Radiological cup position was assessed, including hip rotation centre distance according to Ranawat and cup anteversion according to Widmer. We also evaluated the lever arm and height of the greater trochanter distances and the stem position. Kaplan-Meier analysis was done for revision for any cause and loosening. The hip rotation centre distance was greater and the height of the greater trochanter was lower in group B (p=0.003, p<0.001, respectively). The lever arm distance was lower in group C (p<0.001). A varus stem position was more frequently observed in group B (p<0.001). There were no intra- or post-operative fractures in group A, although there were five intra-operative fractures in the other groups plus two post-operative fractures in group B and four in group C. The rate of dislocation was similar among groups and was the most frequent cause for revision surgery (8 hips for the whole series). The mean post-operative clinical score improved in all groups. The overall survival rate for revision for any cause at 120 months was 88.4% (95% CI 78.8–98), being 97.8% (95% CI 95.2–100) for group A, 81.8% (95% CI 64.8–98.8) for group B and 95.3% (95% CI 91.1–99.6) for group C (log Rank: 0.416). Five hips were revised for loosening. The overall survival rate for loosening at 120 months was 91.9% (95% CI 81.7–100), being 99.2%(95% CI 97.6–100) for group A, 85.5 (95% CI 69.9 −100) for group B and 100% for group C (Log Rank 0.093). Despite a more osteopenic bone in the cemented group, the rate of peri-prosthetic fractures was higher after uncemented THR in patients older than 75 years. Although the overall outcome is good with both types of fixation, the post-operative reconstruction of the hip, which might be more reliable after cemented fixation, may affect the rate of complications in this population


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1317 - 1324
1 Sep 2010
Solomon LB Lee YC Callary SA Beck M Howie DW

We dissected 20 cadaver hips in order to investigate the anatomy and excursion of the trochanteric muscles in relation to the posterior approach for total hip replacement. String models of each muscle were created and their excursion measured while the femur was moved between its anatomical position and the dislocated position. The position of the hip was determined by computer navigation. In contrast to previous studies which showed a separate insertion of piriformis and obturator internus, our findings indicated that piriformis inserted onto the superior and anterior margins of the greater trochanter through a conjoint tendon with obturator internus, and had connections to gluteus medius posteriorly. Division of these connections allowed lateral mobilisation of gluteus medius with minimal retraction. Analysis of the excursion of these muscles revealed that positioning the thigh for preparation of the femur through this approach elongated piriformis to a maximum of 182%, obturator internus to 185% and obturator externus to 220% of their resting lengths, which are above the thresholds for rupture of these muscles. Our findings suggested that gluteus medius may be protected from overstretching by release of its connection with the conjoint tendon. In addition, failure to detach piriformis or the obturators during a posterior approach for total hip replacement could potentially produce damage to these muscles because of over-stretching, obturator externus being the most vulnerable


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 66 - 66
1 May 2012
Khan IH Nicol S Jackson M Monsell F Livingstone JA Atkins RM
Full Access

Lower limb mal-alignment due to deformity is a significant cause of early degenerative change and dysfunction. Standard techniques are available to determine the centre of rotation of angulation (CORA) and extent of the majority of deformities, however distal femoral deformity is difficult to assess because of the difference between anatomic and mechanical axes. We found the described technique involving constructing a line perpendicular to a line from the tip of the greater trochanter to the centre of the femoral head inaccurate, particularly if the trochanter is abnormal. We devised a novel technique which accurately determines the CORA and extent of distal femoral deformity, allowing accurate correction. Using standard leg alignment views of the normal femur, the distal femoral metaphysis and joint line are stylized as a block. A line bisecting the axis of the proximal femur is then extended distally to intersect the joint. The angle (Θ) between the joint and the proximal femoral axis and the position (p) where the extended proximal femoral axis intersects the joint line are calculated. These measurements can then be reproduced on the abnormal distal femur in order to calculate the CORA and extent of the deformity, permitting accurate correction. We examined the utility and reproducibility of the new method using 100 normal femora. Θ = 81 ± sd 2.5. As expected, Θ correlated with femoral length (r=0.74). P (expressed as the percentage of the distance from the lateral edge of the joint block to the intersection) = 61% ± sd 8%. P was not correlated with Θ. Intra-and inter-observer errors for these measurements are within acceptable limits and observations of 30-paired normal femora demonstrate similar values for Θ and p on the two sides. We have found this technique to be universally applicable and reliable in a variety of distal femoral deformities


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 93 - 93
1 Apr 2017
Karaaslan A Karakaşlı A Ertem F Aycan H
Full Access

Background. Intramedullary nailing is a widely accepted treatment method for femoral fractures. Failure of locking screws is often a threatening complication, particularly on comminuted fractures. For comminuted fractures, the locking nails are load-bearing devices. The load transfer between fractured fragments is made through especially the locking screws for these load bearing situations. Nonunion, malunion, delayed union, shortening, and nail migration are the expected results if early failure of locking screws is present with comminuted fractures. In this study our aim was to compare the bending resistance of titanium and stainless steel locking screws. Methods. We tested 60 locking screws in six groups (titanium, stainless steel, unthreaded, low threaded and high threaded) in a steel tube that has 30 mm inner diameter, which imitates the lesser trochanter level. We determined the yield points at three-point bending tests that permanent deformation started in the locking screws using an axial compression testing machine. Results. The three-point bending resistance of 5 mm low threaded titanium locking screws (bending at 1413 N loading) was 46.5 % less than the three-point bending resistance of 5 mm low threaded stainless steel locking screws (bending at 2171 N loading) (p < 0.001). Five mm stainless steel locking screws are 29–57 % more resistant to three-point bending deformation than titanium ones. Conclusions. Therefore, stainless steel locking screws instead of titanium ones must be preferred in comminuted femur shaft fractures. In intramedullary nailing of comminuted or long oblique femur fractures, a locking screw should be 5 mm low threaded or unthreaded stainless steel or 5 mm unthreadedtitanium. Five mm high threaded titanium or stainless steel screws must not ever be used as a locking screw. Level of Evidence. 5. Disclosure. Authors declare that there is no conflict of interest related to the present study


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 53 - 53
1 Jan 2017
Devivier C Roques A Taylor A Heller M Browne M
Full Access

There is a critical need for safe innovation in total joint replacements to address the demands of an ageing yet increasingly active population. The development of robust implant designs requires consideration of uncertainties including patient related factors such as bone morphology but also activity related loads and the variability in the surgical procedure itself. Here we present an integrated framework considering these sources of variability and its application to assess the performance of the femoral component of a total hip replacement (THR). The framework offers four key features. To consider variability in bone properties, an automated workflow for establishing statistical shape and intensity models (SSIM) was developed. Here, the inherent relationship between shape and bone density is captured and new meshes of the target bone structures are generated with specific morphology and density distributions. The second key feature is a virtual implantation capability including implant positioning, and bone resection. Implant positioning is performed using automatically identified bone features and flexibly defined rules reflecting surgical variability. Bone resection is performed according to manufacturer guidelines. Virtual implantation then occurs through Boolean operations to remove bone elements contained within the implant's volume. The third feature is the automatic application of loads at muscle attachment points or on the joint contact surfaces defined on the SSIM. The magnitude and orientation of the forces are derived from models of similar morphology for a range of activities from a database of musculoskeletal (MS) loads. The connection to this MS loading model allows the intricate link between morphology and muscle forces to be captured. Importantly, this model of the internal forces provides access to the spectrum of loading conditions across a patient population rather than just typical or average values. The final feature is an environment that allows finite element simulations to be run to assess the mechanics of the bone-implant construct and extract results for e.g. bone strains, interface mechanics and implant stresses. Results are automatically processed and mapped in an anatomically consistent manner and can be further exploited to establish surrogate models for efficient subsequent design optimization. To demonstrate the capability of the framework, it has been applied to the femoral component of a THR. An SSIM was created from 102 segmented femurs capturing the heterogeneous bone density distributions. Cementless femoral stems were positioned such that for the optimal implantation the proximal shaft axis of the femurs coincided with the distal stem axis and the position of the native femoral head centre was restored. Here, the resection did not affect the greater trochanter and the implantations were clinically acceptable for 10000 virtual implantations performed to simulate variability in patient morphology and surgical variation. The MS database was established from musculoskeletal analyses run for a cohort of 17 THR subjects obtaining over 100,000 individual samples of 3D muscle and joint forces. An initial analysis of the mechanical performance in 7 bone-implant constructs showed levels of bone strains and implant stresses in general agreement with the literature


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 15 - 15
1 Aug 2013
Diffin C Chambers M Campton L Roberts J
Full Access

Posterior soft tissue repair is often performed in Total Hip Arthroplasty (THA). Many reports have shown the advantage of posterior soft tissue repair in reducing their prosthetic hip dislocation rates. We describe an easy and inexpensive way of passing sutures through small drill holes in the Greater Trocanter to re-attach muscle, tendon and capsule in a posterior soft tissue repair. By using a reversed monofilament suture on a straight needle held in artery forceps and passing this in a retrograde direction through a drill hole, a suture capturing device is produced. By capturing the long ends of sutures tied in the short external rotators and the posterior capsule of the hip through 2 drill holes in the Greater Trochanter, a posterior soft tissue repair can be performed. We have used this technique successfully in over 100 consecutive THAs. We conclude that the use of a monofilament suture used in the manner describe is an excellent and inexpensive way to aid in a posterior soft tissue repair in THAs. This is done without the cost of an additional dedicated suture passing device. The suture could also be used in the skin closure if desired


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 98 - 98
1 May 2012
Dando M Sparkes V
Full Access

Aim. To identify differences in hip muscle strength, knee valgus during a single leg squat (SLS),and function between subjects with Greater Trochanter Pain Syndrome (GTPS) and healthy(H) subjects. To determine associations between pain, function, hip strength and SLS in GPTS subjects. Study Design: Observational study of 14 (3 male 11 female) PFP patients (mean symptom duration 17 months), matched for age height and weight with 14 healthy (H) subjects, All subjects fulfilled specific inclusion and exclusion criteria. Appropriate Ethical approval was obtained. Measures for both groups were Knee valgus angle during SLS using 2D motion capture and SiliconCoach software for measurement of knee valgus angles, hip abduction, internal and external rotation muscle strength using hand held dynamometry, visual analogue scale for pain. Lower Extremity Functional Scale (LEFS). All measures were taken on the affected leg for GPTS subjects and matched for the equivalent leg in healthy group. Strength was reported as a percentage of body weight. SiliconCoach was reliable for intra-rater reliability of knee valgus angle (ICC.996). Results. There were no significant differences in age, height and weight (p=.85,.57,.51 respectively). Significant differences existed in hip abduction strength p=.005(GPTS13.72 (7.65), H21.49 (5.55)) and LEFS p=0.001(GPTS 57.28(16.55), H76.92(4.44)). There were no significant differences in internal and external rotation and knee valgus angles p=.509, p=.505, p=.159 respectively. There was a negative correlation between pain and function r=.879) p=0.001) and a moderate positive correlation between function and hip abduction strength r=.428 (p=.127). This preliminary study shows that patients with GPTS have reduced strength in hip abductor musculature when compared to healthy subjects. This may be due to pain inhibition; however the true causes of pain need to be determined. Pain and to a lesser extent hip abductor strength appears to have an effect on function in GPTS patients. In summary the results indicate that hip abductor muscle strengthening and management strategies to reduce pain should be included in the rehabilitation programmes of patients with GPTS. Further research with larger numbers of subjects should be developed to investigate this subject


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 53 - 53
1 Aug 2012
Mayhew P Vindlacheruvu M Poole K
Full Access

The calcar femorale or ‘true neck’ of the femur has a role in transmitting load from the cantilevered neck to the femoral shaft (Zhang 2009). It can appear as a distinct condensation in clinical CT images because its structure is very similar to compact bone (Aspden 1998). Harty (1957) proposed that the calcar acts as a ‘spike’ in certain fall situations, contributing to splitting of the trochanter. We hypothesised that among elderly fallers, the size of the calcar would influence whether fractures occurred in the trochanteric (TR) or femoral neck (FN) site. We also asked whether patients who sustained a fracture had more or less calcar bone than frailty-matched controls that fell but didn't fracture. The FEMCO study is designed to investigate male (M) and female (F) patients with acute hip fracture with multi-detector CT, before they undergo surgery. It includes an age, sex and frailty-matched control group (who have sustained at least one injurious fall without hip fracture). The fractured hip is reconstructed in 3D for classification of fracture type (FN or TR). For the present pilot study, there were 14 cases (5TR, 9FN mean 80+/−8.5yrs. 7M, 7F) and 11 controls (83+/−7.0yrs. 3M, 8F). Axial CT slices where a calcar was visible were opened in Stradwin 4.1 software (Treece 2011). The calcar femorale was semi-automatically selected with the flood fill tool. Each axial image that contained a visible calcar was included in the analysis, so that for each femur a single calcar volume was generated. Results were examined using ANOVA. Combining male and female results, there was a non-significant trend towards a higher calcar volume in patients sustaining trochanteric rather than femoral neck fractures (0.73cm3 +/− 0.26 vs 0.61cm3 +/−0.14, p=0.27) but no difference between cases and controls. Males had a significantly higher calcar volume than females (mean 0.82cm3 +/− 0.24 vs 0.59cm3 +/− 0.13, p=0.005). Further studies are now planned in larger samples of each sex, to examine the role of the calcar in fracture mechanics. Three-dimensional visualisations provide a novel insight into the damage patterns and resultant fragment locations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 15 - 15
1 Mar 2012
Takahira N Uchiyama K Fukushima K Kawamura T Itoman M
Full Access

Introduction. Curved varus intertrochanteric osteotomy of the femur is an excellent and minimally invasive method for the treatment of osteonecrosis of the femoral head or osteoarthritis of the hip for joint preservation. However, the early postoperative complications of this procedure may be due to separation at the osteotomy site and an increase in varus angle due to early partial weight bearing. Methods. We modified the curved varus intertrochanteric osteotomy of the femur by performing an additional rotation. Regarding the surgical technique, curved varus osteotomy is performed at an angle of 30 degrees to the femoral shaft and an additional rotational osteotomy is also performed at an angle of 15 or 20 degrees to the osteotomy plane. Partial weight bearing with one-third body weight is permitted 3 weeks after surgery. Results. Curved varus intertrochanteric osteotomy of the femur was designed for developmental dysplastic hip by Nishio in 1969 and reported to have good outcomes in 1971. An important feature of this method is that the incidence of high riding of the greater trochanter or shortening of leg length is less than that in varus intertrochanteric osteotomy. Moreover, good contact at the osteotomy site and less lateral shift of the femoral shaft is observed. However, we have experienced a case of separation at the osteotomy site and increase of the varus angle in our hospital. Previous reports recommended that partial weight bearing with one-third body weight should be initiated after 5 weeks and full weight bearing after 6 months because the contact area is decreased at the osteotomy site by varus osteotomy. The post-operative recovery of the patients with total hip arthroplasty is rapid, therefore, we must consider important issues such as initiating the rehabilitation program early and reducing the duration of hospitalization. As per our experience, we think that partial weight bearing with one-third body weight should be initiated at 3 weeks. At the osteotomy site, we rotated the nearest bone segment to move it such that it intersects the proximal and distal bone cortex. Therefore, the osteotomy site will be stabilized and will have the ability to endure load. Another feature of this technique is that the partial removal of the necrotic area leads to an increase in the healthy load-bearing area. A limitation of this method is that an angle of an additional rotation is up to 30 degrees, because the joint capsule cannot be incised circumferentially and the short external rotator tendons should also be preserved. Conclusion. Modified curved varus intertrochanteric osteotomy is a useful method for the prevention of increased degree of a varus angle as well as for obtaining more intact area of femoral head in osteonecrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 921 - 929
1 Aug 2001
Aamodt A Lund-Larsen J Eine J Andersen E Benum P Husby OS

We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair. The two types of femoral stem were then inserted randomly into the left or right femora and the cortical strains were again measured. Both induced significant stress shielding in the proximal part of the metaphysis, but the deviation from the physiological strains was most pronounced after insertion of the anatomical stems. The principal compressive strain at the calcar was reduced by 90% for the anatomical stems and 67% for the customised stems. Medially, at the level of the lesser trochanter, the corresponding figures were 59% and 21%. The anatomical stems induced more stress concentration on the anterior aspect of the femur than did the customised stems. They also increased the hoop strains in the proximomedial femur. Our study shows a consistently more physiological pattern of strain in the proximal femur after insertion of customised stems compared with standard, anatomical stems


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 135 - 142
1 Jan 1999
Kärrholm J Hultmark P Carlsson L Malchau H

We revised 24 consecutive hips with loosening of the femoral stem using impaction allograft and a cemented stem with an unpolished proximal surface. Repeated radiostereometric examinations for up to two years showed a slow rate of subsidence with a mean of 0.32 mm (−2.0 to +0.31). Fifteen cases followed for a further year showed the same mean subsidence after three years, indicating stabilisation. A tendency to retroversion of the stems was noted between the operation and the last follow-up. Retroversion was also recorded when displacement of the stem was studied in ten of the patients after two years. Repeated determination of bone mineral density showed an initial loss after six months, followed by recovery to the postoperative level at two years. Defects in the cement mantle and malalignment of the stem were often noted on postoperative radiographs, but did not correlate with the degrees of migration or displacement. After one year, increasing frequency of trabecular remodelling or resorption of the graft was observed in the greater trochanter and distal to the tip of the stem. Cortical repair was noted distally and medially (Gruen regions 3, 5 and 6). Migration of the stems was the lowest reported to date, which we attribute to the improved grafting technique and to the hardness of the graft


Bone & Joint 360
Vol. 9, Issue 3 | Pages 8 - 9
1 Jun 2020