We have developed a new drug-delivery system using reconstituted bone xenograft to treat chronic osteomyelitis. This material, which has the capabilities of osteoinduction and osteoconduction, was supplemented with up to 2000 times the minimum inhibitory concentration of gentamicin against Staphylococcus aureus to prepare a gentamicin-reconstituted bone xenograft-composite (G-RBX-C). In a rabbit model, we evaluated the release of gentamicin from this composite in vivo, its capability for induction of ectopic bone and the repair of segmental defects of the radius. There was a high level of concentration of antibiotics, which was sustained for at least ten days. In the study of induction of ectopic bone, there was abundant woven bone in the G-RBX-C group two weeks after operation. At 16 weeks after implantation of G-RBX-C the radial defects had been repaired, with the formation of lamellar bone and recanalisation of the marrow cavity. Our findings suggest that G-RBX-C may be useful in the
We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of the antibiotics from the blocks. The bactericidal concentration of ISP from A-W GC was maintained for more than 42 days, but that from HA decreased to below the detection limit after 28 days. The concentrations of CMZ from both materials were lower than those of ISP. An in vivo study using rabbit femora showed that an osseous concentration of ISP was maintained at eight weeks after implantation. Osteoconduction of the A-W GC block was good. Four patients with infected hip arthroplasties and one with osteomyelitis of the tibia have been treated with the new delivery system with excellent results.
Infections represent a devastating complication in orthopedic and traumatological surgery, with high rates of morbidity and mortality. An early intervention is essential, and it includes a radical surgical approach supported by targeted intravenous antimicrobial therapy. The availability of parenteral antibiotics at the site of infection is usually poor, so it is crucial to maximize local antibiotic concentration using local carriers. Our work aims to describe the uses of one of these systems, Stimulan®, for the management and prevention of infections at our Institution. Analysing the reported uses of Stimulan®, we identified two major groups: bone substitute and carrier material for local antibiotic therapy. The first group includes its application as a filler of dead spaces within bone or soft tissues resulting from traumatic events or previous surgery. The second group comprehends the use of Stimulan® for the
The bone infection osteomyelitis (typically Staphylococcus aureus) requires a multistep treatment process including: surgical debridement, long-term systemic high-dose antibiotics, and often bone grafting. With antibiotic resistance becoming increasingly concerning, alternative approaches are urgently needed. Herein, we develop a one-step
Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage. Materials and Methods. We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta tricalcium phosphate (β TCP), able to provide a long-term release of different antibiotics. We have included
Osteomyelitis is an infection of bone or bone marrow with a concomitant inflammation involving the bone marrow and the surrounding tissues. Chronic osteomyelitis is historically treated in a two-stage fashion with antibiotic-loaded polymethylmethacrylate as local antibacterial therapy. Two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. Next to antibiotic releasing biomaterials, S53P4 bioactive glass is a biomaterial that enables one-stage surgery in local
Chronic osteomyelitis is historically treated in a two stage fashion with antibiotic-loaded polymethylmethacrylate (PMMA) as local antibacterial therapy. However, two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. In recent years new biomaterials were developed that allow to change this treatment algorithm. S53P4 bioactive glass is such a novel biodegradable antibacterial bone graft substitute that enables a one-stage surgery in local
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres. The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the
Bone infection occurring after fractures or orthopedic surgery can progress to the chronic stage and lead to poor results of treatment. Optimal
The
The
We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.
The objective of this study was to compare the elution characteristics,
antimicrobial activity and mechanical properties of antibiotic-loaded
bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic
with inert filler (xylitol), or liquid antibiotic, particularly focusing
on vancomycin and amphotericin B. Cement specimens loaded with 2 g of vancomycin or amphotericin
B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol
(xylitol group) or 12 ml of antibiotic solution containing 2 g of
antibiotic (liquid group) were tested.Objectives
Methods
We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p <
0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model.
Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in low doses, cytotoxic drugs mixed with polymethylmethacrylate cement could therefore be considered as effective local adjuvant treatment for GCTs.