Despite proven advantages, pulsatile lavage seems to be used infrequently during preparation in cemented total knee arthroplasty. This remains irritating, as the technique has been suggested to improve radiological survival in cemented TKA, where aseptic loosening of the tibial component represents the main reason for revision. Furthermore, there may be a potential improvement of fixation strength for the
Introduction. Radiolucencies beneath the tibial component are well recognized in knee arthroplasty; the aetiology and significance are poorly understood. Non-progressive narrow radiolucencies with a sclerotic margin are thought not to be indicative of loosening. Factors which decrease the incidence of radiolucencies include cementless fixation and the use of pulse lavage. Leg/component alignment or BMI do not influence radiolucency. We are not aware of any studies that have looked at the effect of load type on radiolucency. The Oxford domed lateral tibial component was introduced to decrease the bearing dislocation rate that was unacceptably high with the flat
Introduction. Unicompartmental knee arthroplasty (UKA) in patients with isolated medial osteoarthritis of the knee is nowadays a standard procedure with good results, especially with the minimally-invasive approach. However, the survival rate of the unicompartmental knee prostheses is inferior to that of total knee prostheses. Therefore, further studying of UKA is still necessary. In most mobile bearing designs the femoral component has a spherical surface and therefore its positioning is not crucial. The role of the tibial slope in UKA has not been investigated so far. The manufacturers recommend tibial slopes with values between 10° positive slope and 5° negative slope. Most surgeons try to reconstruct the anatomical slope with a high failure by measuring the slope on x-rays. The aim of this study was to investigate the influence of the tibial slope on the wear rate of a medial UKA. Materials and methods. In vitro wear simulation of medial mobile bearing unicompartmental knee prosthesis with a spherical femoral surface (Univation ®) was performed with a customized four-station servo-hydraulic knee wear simulator (EndoLab GmbH, Thansau, Germany) reproducing exactly the walking cycle as specified in ISO 14243–1:2002(E). The