Introduction. Initial large-scale clinical studies of porous tantalum implants have been generally promising with well-fixed implants and few cases of loosening [1–3]. An initial retrieval study suggests increased bone ingrowth in a modular
Introduction. The goal of
Introduction. Backside wear of polyethylene (PE) inlays in fixed-bearing total knee replacement (TKR) generates high number of wear debris, but is poorly studied in modern plants with improved locking mechanisms. Aim of study. Retrieval analysis of PE inlays from contemporary fixed bearing TKRs - to evaluate the relationship between backside wear and liner locking mechanism and material type and roughness of the
Introduction. Post-operative clinical outcomes of TKA are dependent on a multitude of surgical and patient-specific factors. Malrotation of the femoral and/or tibial component is associated with pain, accelerated wear of the tibial insert, joint instability, and unfavorable patellar tracking and dislocation. Using the transepicondylar axis to guide implantation of the femoral component is considered to be an accurate anatomical reference and is widely used. However, no gold standard currently exists with respect to ensuring optimal rotation of the
The goal of
Introduction:. Appropriate transverse rotation of the tibial component is critical to achieving a balance of tibial coverage and proper tibio-femoral kinematics in total knee replacement (TKR), yet no consensus exists on the best anatomic references to determine rotation. Historically, surgeons have aligned the tibial component to the medial third of the tibial tubercle. 1. , but recent literature suggests this may externally rotate the tibial component relative to the femoral epicondylar axis (ECA) and that the medial border of the tubercle is more reliable. 2. Meanwhile, some TKR components are designed with asymmetry of the
Introduction:. Adequate coverage of the resected tibial plateau with the
Introduction. Cementless total knee arthroplasty (TKA) designs are clinically successful and allow for long term biological fixation. Utilizing morselized bone to promote biological fixation is a strategy in cementless implantation. However, it is unknown how bone debris influences the initial placement of the tray. Recent findings show that unseated tibia trays without good contact with the tibial resection experience increased motion. This current study focuses on the effect of technique and instrument design on the initial implantation of a cementless porous tibia. Specifically, can technique or instrument design influence generation of bone debris, and thereby change the forces required to fully seat a cementless tray with pegs?. Methods. This bench top test measured the force-displacement curve during controlled insertion of a modern cementless tibia plate with two fixation pegs. A total of nine pairs of stripped human cadaver tibias were prepared according to the surgical technique. However, the holes for the fixation pegs were drilled intentionally shallow to isolate changes in insertion force due to the hole preparation. A first generation instrument set (Instrument 1.0) and new instrument set design (Instrument 2.0), including a new drill bit designed to remove debris from the peg hole, were used. The tibias prepared with Instrument 1.0 were either cleaned to remove bone debris from the holes or not cleaned. The tibias prepared with the Instrument 2.0 instruments were not cleaned, resulting in three groups: Instrument 1.0 (n=7), Instrument 1.0 Cleaned (n=5), and Instrument 2.0 (n=6). Following tibia resection and preparation of holes for the fixation pegs, the tibias were cut and potted in bone cement ensuring the osteotomy was horizontal. The
Recent clinical data suggest improvement in the fixation of tibia trays for total knee arthroplasty when the trays are additive manufactured with highly porous bone ingrowth structures. Currently, press-fit TKA is less common than press-fit THA. This is partly because the loads on the relatively flat, porous, bony apposition area of a
Introduction:. Primary stability is crucial for long-term fixation of cementless
Introduction. Current pre-clinical testing is performed using knee wear simulators with standardized walking profiles. Differences in generated damage patterns to those observed on retrieved liners have been explained with the absence of activities other than walking, less severe loading conditions, and a discrepancy in the simulator's tibiofemoral contact mechanics and in vivo knee excursion. While it has been recognized that rotational alignment of the knee may also drive the location and shape of wear scars, to the best of our knowledge this parameter has not been investigated in knee simulator studies. Methods. Here, we use patient specific gait as input to the simulation to approximate the patient specific contact mechanics. Kinematic and kinetic input data was obtained from gait analysis of a patient with a MGII (Zimmer Inc.) prosthesis at 11 years post-op using the point cluster technique for tibiofemoral kinematics, and a mathematical model for internal force calculations. Using the identical type of prosthesis on the simulator, wear tests were conducted in displacement mode on a closed-loop controlled station. Because x-rays of the patient suggested an internal rotation of the
Introduction. Cementless tibial fixation has been used for over 30 years. There are several potential advantages including preservation of bone stock and ease of revision. More importantly, for young active patients there is the potential for increased longevity of fixation. However, the clinical results have been variable, with reports of extensive radiolucent lines, rapid early migration and aseptic loosening. Problems appear to stem from a failure to become sufficiently osseointegrated, which in turn suggests a lack of primary stability. In order to achieve boney ingrowth, interface micromotions should be less than 50 microns, whereas fibrous tissue formation is known to occur if micrmotions are in excess of 150 microns. The degree of micromotion at the bone-implant interface are dependent on the kinematics and kinetics of the replaced joint. Finite element analyses has been used to assess primary stability, however, it is becoming increasing difficult to differentiate performance. The aim of this study was too examine the micromotion for a variety of different activities for three commercially available
We identified an unusual pattern of backside deformation on polyethylene (PE) inserts of contemporary total knee replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with NexGen central-locking trays. This backside deformation was significantly associated with tray debonding. Furthermore, recent studies have shown high rate of tray debonding in PS NexGen TKRs. Subsequently, a field safety notice was issued regarding the performance of this particular device combination and the Option tray has been withdrawn from use. Therefore, we hypothesised that the backside deformation of PS inserts may be greater than that of CR inserts. At our national implant retrieval centre, we used peer-reviewed techniques to analyse changes in the bearing wear rate and backside surface deformation of NexGen PE inserts using coordinate measuring machines [N=84 (CR-43 and PS-41) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.Objectives
Design and Methods
Many studies have looked at the effect of titanium versus cobalt chrome baseplates on backside wear. However, the surface finish of the materials is usually different [1,2]. There may also be subtle locking mechanism design changes [2]. The purpose of this study was to evaluate the wear performance of polyethylene inserts when mated with titanium baseplates to cobalt chrome baseplates, where both have non-polished topside surfaces and an identical locking mechanism. A total of three trays per material were used. The titanium trays are intended for cementless application and include a porous titanium surface on the underside, while the cobalt chrome trays are intended for cemented applications. All trays were Triathlon design (Stryker Orthopaedics, Mahwah, NJ). Tibial inserts were manufactured from GUR 1020 polyethylene then vacuum/flush packaged and sterilized in nitrogen (30 kGy). Cobalt chrome femoral components were articulated against the tibial inserts. Surface roughness of the baseplates was measured prior to testing using white light interferometry (Zygo, Middlefield, CT). A 6-station knee simulator (MTS, Eden Prairie, MN) was used for testing. A normal walking profile was applied [3]. Testing was conducted for 1 million cycles. A lubricant of Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA was used [4]. The serum solution was replaced and inserts were weighed for wear every 0.5 million cycles. Standard test protocols were used for cleaning, weighing, and assessing the wear loss [5]. Soak control specimens were used to correct for fluid absorption. Statistical analysis was performed using the Student's t-test (p < 0.05).INTRODUCTION
MATERIALS AND METHODS:
The number of total knee joint replacements has increased dramatically, from 28,000 in 2004 to over 73,000 in 2008 in the UK. This increase in procedures means that there is a need to assess the performance of an implant design in the general population. For younger, more active patients, cementless tibial fixation is an attractive alternative means of fixation and has been used for over 30 years. However, the clinical results with cementless fixation have been variable, with reports of extensive radiolucent lines, rapid early migration and aseptic loosening [1]. This study investigates the inter-patient variability of bone strain at the implant-bone interface of 130 implanted tibias over a full gait cycle. A large scale FE study of a full gait cycle was performed on 130 tibias implanted with a cementless tibia tray (PFC Sigma, DePuy Inc, USA). A population of tibias was generated from a statistical shape and intensity (SSI) model [2]. The tibia tray was automatically positioned and implanted using ZIBAmira (Zuse Institute Berlin, Germany). Cutting and implanting were performed using Boolean operations on the meshed surfaces of the tibia and implant. After generation of a volume mesh from the resulting surface, the bone modulus was mapped onto the new mesh. The FE models were processed in Abaqus (SIMULIA, RI, USA). Associated force data (axial, anterior-posterior and medial-lateral forces and flexion-extension, varus-valgus and internal-external moments) was sampled from a statistical model of the gait cycle derived from musculoskeletal modelling of 20 elderly healthy subjects. Patient weight was estimated using the length of the tibia and a BMI sampled from NHANES data. Loads were applied to four groups of nodes on the tibia tray (anterior, posterior, medial and, lateral) for 51 steps in the gait cycle. The bone and implant were assumed to be bonded, simulating the osseointegrated condition.Introduction
Methods
Introduction. Realistic in-vivo loads on knee implants from telemetric analyses were recently published. Impacting an implant, especially a ceramic one, will produce high peak stresses within the component. Data for loads occurring during implantation of a knee implant are scarce. To ensure a safe impaction of ceramic
Introduction. Kinematics post-TKA are complex; component alignment, component geometry and the patient specific musculoskeletal environment contribute towards the kinematic and kinetic outcomes of TKA. Tibial rotation in particular is largely uncontrolled during TKA and affects both tibiofemoral and patellofemoral kinematics. Given the complex nature of post- TKA kinematics, this study sought to characterize the contribution of
INTRODUCTION. Cementless
Introduction. Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the bone ingrowth extent for
Introduction. For nearly 58% of total knee arthroplasty (TKA) revisions, the reason for revision is exacerbated by component malalignment. Proper TKA component alignment is critical to functional outcomes/device longevity. Several methods exist for orthopedic surgeons to validate their cuts, however, each has its limitations. This study developed/validated an accurate, low-cost, easy to implement first-principles method for calculating 2D (sagittal/frontal plane)