Abstract
The goal of tibial tray placement in total knee arthroplasty (TKA) is to maximise tibial surface coverage while maintaining proper rotation. Maximising tibial surface coverage without component overhang reduces the risk of tibial subsidence. Proper tibial rotation avoids excess risk of patellar maltracking, knee instability, inappropriate tibial loading, and ligament imbalance. Different tibial tray designs offer varying potential in optimising the relationship between tibial surface coverage and rotation. Patient specific instrumentation (PSI) generates customised guides from an MRI- or CT-based preoperative plan for use in TKA. The purpose of the present study was to utilise MRI information, obtained as part of the PSI planning process, to determine, for anatomic, symmetric, and asymmetric tibial tray designs, (1) which tibial tray design achieves maximum coverage, (2) the impact of maximising coverage on rotation, and (3) the impact of establishing neutral rotation on coverage.
MR images for 100 consecutive patients were uploaded into Materialise™ PSI software that was used to evaluate characteristics of tibial component placement. Tibial component rotation and surface coverage was analysed using the preoperative planning software. Anatomic (Persona™), symmetric (NexGen™), and asymmetric (Natural-Knee II™) designs from a single manufacturer (Zimmer™) were evaluated to assess the relationship of tibial coverage and tibial rotation. Tibial surface coverage, defined as the proportion of tibial surface area covered by a given implant, was measured using Adobe Photoshop™ software. Rotation was calculated with respect to the tibial AP axis, which was defined as the line connecting the medial third of the tibial tuberosity and the PCL insertion.
When tibial surface coverage was maximised, the anatomic tray compared to the symmetric/asymmetric trays showed significantly higher surface coverage (82.1% vs 80.4/80.1%; p<0.01), significantly less deviation from the AP axis (0.3° vs 3.0/2.4°; p<0.01), and a significantly higher proportion of cases within 5° of the AP axis (97% vs 73/77%). When constraining rotation to the AP axis, the anatomic tray showed significantly higher surface coverage compared to the symmetric/asymmetric trays (80.8% vs 76.3/75.8%; p<0.01). No significant differences were found between symmetric and asymmetric trays.
We found that the anatomic tibial tray resulted in significantly higher tibial coverage with significantly less deviation from the AP axis compared to the symmetric and asymmetric trays. When rotation was constrained to the AP axis, the anatomic tray resulted in significantly higher tibial coverage than the symmetric and asymmetric trays. Tibial rotation is recognised as an important factor in the success of a total knee replacement. Maximising coverage with the least compromise in rotation is the goal for tibial tray design. In this study, the anatomic tibia seemed to optimise the relationship between tibial surface coverage and rotation. This study additionally illustrates the way by which advanced preoperative planning tools (ie. MRI/computer reconstructions) allow us to obtain valuable information with regard to implant design.