Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 22 - 22
1 Jul 2020
Wong M Buckley R Duffy P Korley R Martin R Harrison T Sanders DW Schneider P Wiens C
Full Access

The syndesmosis ligament complex stabilizes the distal tibiofibular joint, while allowing for the subtle fibular motion that is essential for ankle congruity. Flexible fixation with anatomic syndesmosis reduction results in substantial improvements in functional outcomes. New dynamic CT technology allows real-time imaging, as the ankle moves through a range of motion. The aim of this study was to determine if dynamic CT analysis is a feasible method for evaluating syndesmosis reduction and motion following static and flexible syndesmosis fixation.

This is a subgroup analysis of a larger multicenter randomized clinical trial, in which patients with AO 44-C injuries were randomized to either Tightrope (one knotless Tightrope, Group T) or screw fixation (two 3.5-mm cortical screws, Group S). Surgical techniques and rehabilitation were standardized. Bilateral ankle CT scans were performed at one year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). Three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: anterior, midpoint, and posterior tibiofibular distances. T-tests compared Group T and Group S, and injured and uninjured ankles in each group.

Fifteen patients (six Group T [three male], nine Group S [eight male]) were included. There was no difference for mean age (T = 42.8 ± 14.1 years, S = 37 ± 12.6, P = 0.4) or time between injury and CT scan (T = 13 ± 1.8 months, S = 13.2 ± 1.8, P = 0.8). Of note in Group S, seven of nine patients had at least one broken screw and one additional patient had screws removed by the time of their dynamic CT. There was no significant difference between treatment groups for tibiofibular distance measurements in maximal PF or DF. Group T showed no significant difference between the injured and uninjured side for tibiofibular measurements in maximal PF and DF, suggesting anatomic reduction. For Group S, however, there was a significantly larger distance for all three measurements at maximal PF compared to the uninjured ankle (all P < 0 .05).

In all but one Group S patient, screws were broken or removed prior to their dynamic CT, allowing possible increased syndesmotic motion, similar to Group T. Despite this, dynamic CT analysis detected increased tibiofibular distance in Group S as ankles moved into maximal PF when compared with the uninjured ankle. Given the importance of anatomic syndesmosis reduction, dynamic ankle CT technology may provide valuable physiologic information warranting further investigation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 1 - 1
23 Feb 2023
Chong S Khademi M Reddy K Anderson G
Full Access

Treatment of posterior malleolar (PM) ankle fractures remain controversial. Despite increasing recommendation for small PM fragment fixation, high quality evidence demonstrating improved clinical outcomes over the unfixated PM is limited. We describe the medium-to-long term clinical and radiographical outcomes in younger adult patients with PM ankle fractures managed without PM fragment fixation. A retrospective cohort study of patients aged 18–55 years old admitted under our orthopaedic unit between 1st of April 2009 and 31st of October 2013 with PM ankle fractures was performed. Inclusion criteria were that all patients must mobilise independently pre-trauma, have no pre-existing ankle pathologies, and had satisfactory bimalleolar and syndesmotic stabilisation. Open fractures, talar fractures, calcaneal fractures, pilon fractures, subsequent re-injury and major complications were excluded. All PM fragments were unfixated. Clinical outcomes were evaluated using Foot and Ankle Ability Measure (FAAM) with activities of daily living (ADL) and sports subscale, visual analogue scale (VAS) and patient satisfaction ratings. Osteoarthrosis was assessed using modified Kellgren-Lawrence scale on updated weightbearing ankle radiographs. 61 participants were included. Mean follow-up was 10.26 years. Average PM size was 16.19±7.39%. All participants were evaluated for clinical outcomes, demonstrating good functional outcomes (FAAM-ADL 95.48±7.13; FAAM-Sports 86.39±15.52) and patient satisfaction (86.16±14.42%), with minimal pain (VAS 1.13±1.65). Radiographical outcomes were evaluated in 52 participants, showing no-to-minimal osteoarthrosis in 36/52 (69.23%), mild osteoarthrosis in 14/52 (26.92%) and moderate osteoarthrosis in 2/52 (3.85%). Clinical outcomes were not associated with PM fragment size, post-reduction step-off, dislocation, malleoli fractured or syndesmotic injury. PM step-off and dislocation were associated with worse radiographical osteoarthrosis. Other published medium-to-long term studies reported overall good outcomes, with no differences after small fragment fixation. The unfixated smaller posterior malleolus fragment demonstrated overall satisfactory clinical and radiographical outcomes at 10-year follow-up and may be considered a valid treatment strategy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 14 - 14
1 May 2012
Lam P
Full Access

Ankle sprains have been shown to be the most common sports related injury. Ankle sprain may be classified into low ankle sprain or high ankle sprain. Low ankle sprain is a result of lateral ligament disruption. It accounts for approximately 25% of all sports related injuries. The ankle lateral ligament complex consists of three important structures, namely the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL) and posterior talofibular ligament (PTFL). The ATFL is the weakest and most easily injured of these ligaments. It is often described as a thickening of the anterolateral ankle capsule. The ATFL sits in a vertical alignment when the ankle is plantarflexed and thus is the main stabiliser against an inversion stress. T he CFL is extracapsular and spans both the tibiotalar and talocalcaneal joints. The CFL is vertical when the ankle is dorsiflexed. An isolated injury to the CFL is uncommon. Early diagnosis, functional management and rehabilitation are the keys to preventing chronic ankle instability following a lateral ligament injury. Surgery does not play a major role in the management of acute ligament ruptures. Despite this up to 20% of patients will develop chronic instability and pain with activities of daily living and sport especially on uneven terrain. Anatomic reconstruction for this group of patients is associated with 90% good to excellent results. It is important that surgery is followed by functional rehabilitation. One of the aims of surgery in patients with recurrent instability is to prevent the development of ankle arthritis. It should be noted that the results of surgical reconstruction are less predictable in patients with greater than 10 year history of instability. Careful assessment of the patient with chronic instability is required to exclude other associated conditions such as cavovarus deformity or generalised ligamentous laxity as these conditions would need to be addressed in order to obtain a successful outcome. High ankle sprain is the result of injury to the syndesmotic ligaments. The distal tibiofibular joint is comprised of the tibia and fibula, which are connected by anterior inferior tibiofibular ligament, interosseous ligament and the posterior inferior tibiofibular ligament (superficial and deep components). The mechanism of injury is external rotation and hyperdorsiflexion. High index of suspicion is required as syndesmotic injuries can occur in association of low ankle sprains. The clinical tests used in diagnosing syndesmotic injuries (external rotation, squeeze, fibular translation and cotton) do not have a high predictive value. It is important to exclude a high fibular fracture. Plain radiographs are required. If the radiograph is normal then MRI scan is highly accurate in detecting the syndesmotic disruption. Functional rehabilitation is required in patients with stable injuries. Syndesmotic injuries are often associated with a prolonged recovery time. Accurate reduction and operative stabilisation is associated with the best functional outcome in patients with an unstable syndesmotic injury. Stabilisation has traditionally been with screw fixation. Suture button syndesmosis fixation is an alternative. Early short-term reviews show this alternate technique has improved patient outcomes and faster rehabilitation without the need for implant removal


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 96 - 96
1 Jul 2020
Khan M Alolabi B Horner N Stride D Wang J
Full Access

Ankle fractures are the fourth most common fracture requiring surgical management. The deltoid ligament is considered the primary stabilizer of the ankle against a valgus force. The management of the deltoid ligament in ankle fractures is currently a controversial topic no consensus exists regarding repair in the setting of ankle fractures. The purpose of this systematic review is to examine the role and indications for deltoid ligament repair in ankle fractures. A systematic database search was conducted with Medline, Pubmed and Embase for relevant studies discussing patients with ankle fractures involving deltoid ligament rupture and repair. The papers were screened independently and in duplicate by two reviewers. Study quality was evaluated using the MINORs criteria. Data extraction included post-operative outcomes, pain, range of motion (ROM), function, medial clear space (MCS), syndesmotic malreduction and complication rates. Following title, abstract and full text screening, 10 eligible studies published between 1987 and 2017 remained for data extraction (n = 528). The studies include 325 Weber B and 203 Weber C type fractures. Malreduction rate in studies with deltoid ligament repair was 7.4% in comparison to those without repair at 33.3% (p < 0.05). Eleven (4%) of deltoid ligament repair patients returned for re-operation to have implants removed in comparison to eighty three (42%) of those without repair (p < 0.05). There was no significant difference for pain, function, ROM, MCS and complication rates (p < 0.05). The mean operating time of deltoid ligament repair groups was 20 minutes longer than non-repair groups(p < 0.05). Deltoid ligament repair offers significantly lower syndesmotic malreduction rates and reduced re-operation rates for hardware removal when performed instead of transsyndesmotic screw fixation. When compared to non-repair groups, there are no significant differences in pain, function, ROM, MCS and complication rates. Deltoid ligament repair should be considered for ankle fracture patients with syndesmotic injury, especially those with Weber C. Other alternative syndesmotic fixation methods such as suture button fixation should be explored. A large multi-patient randomized control trial is required to further examine the outcomes of ankle fracture patients with deltoid ligament repair


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 84 - 84
1 Aug 2020
Kubik J Johal H Kooner S
Full Access

The optimal management of rotationally-unstable ankle fractures involving the posterior malleolus remains controversial. Standard practice involves trans-syndesmotic fixation (TSF), however, recent attention has been paid to the indirect reduction of the syndesmosis by repairing small posterior malleolar fracture avulsion fragments, if present, using open reduction internal fixation. Posterior malleolus fixation (PMF) may obviate the need for TSF. Given the limited evidence and diversity in surgical treatment options for rotationally-unstable ankle fractures with ankle syndesmosis and posterior malleolar involvement, we sought to assess the research landscape and identify knowledge gaps to address with future clinical trials. We performed a scoping review to investigate rotational ankle fractures with posterior malleolar involvement, utilizing the framework originally described by Arksey and O'Malley. We searched the English language literature using the Ovid Medline and Embase databases. All study types investigating rotationally-unstable ankle fractures with posterior malleolus involvement were categorized into defined themes and descriptive statistics were used to summarize methods and results of each study. A total of 279 articles published from 1988 to 2018 were reviewed, and 70 articles were included in the final analysis. The literature consists of studies examining the surgical treatment strategies for PMF (n=21 studies, 30%), prognosis of rotational ankle fractures with posterior malleolar involvement (n=16 studies, 23%), biomechanics and fracture pattern of these injuries (n=13 studies, 19%), surgical approach and pertinent anatomy for fixation of posterior malleolus fractures (n=12 studies, 17%), and lastly surgical treatment of syndesmotic injuries with PMF compared to TSF (n=4 studies, 6%). Uncontrolled case series of single treatment made up the majority of all clinical studies (n=44 studies, 63%), whereas controlled study designs were the next most common (n=16 studies, 23%). Majority of research in this field has been conducted in the past eight years (n=52 studies, 74%). Despite increasing concern and debate among the global orthopaedic community regarding rotationally-unstable ankle fractures with syndesmosis and posterior malleolar involvement, and an increasing trend towards PMF, optimal treatment remains unclear when comparing TSF to PMF. Current research priorities are to (1) define the specific injury pattern for which PMF adequately stabilizes the syndesmosis, and (2) conduct a randomized clinical trial comparing PMF to TSF with the assistance of the orthopaedic community at large with well-defined clinical outcomes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 106 - 106
1 Mar 2012
Ellanti P Ashraf M Thakaral R McCarthy T O'Sulllivan K McElwain J
Full Access

Introduction. It is recommended that the ankle be held in dorsiflexion at the time of placement of syndesmosis screw. We assessed the validity of this recommendation. Materials and methods. A two-part roentgenographic and computerised analysis of distal tibiofibular syndesmosis. The first part involved recruitment of 30 healthy adult volunteers. The second part involved 15 ankle fractures with syndesmotic injury requiring syndesmosis screw placement. In the first part individuals maximally dorsiflexed and plantarflexed their ankles in a specialised jig for standardisation. Mortice views were taken and intermalleolar distance measured. In the second part mortice views were taken in plantarflexion and dorsiflexion before and after the placement of syndesmosis screw in theatre. The intermalleolar distance was then measured. Results. In both parts of the study we found the change in intermalleolar distance between the positions of plantarflexion and dorsiflexion was not more than 0.9 mm. This change is significantly less than the calculated difference between the anterior and posterior talar body width of 3-5 mm. Conclusion. This study shows that the width of ankle mortice is independent of the position of the talus occupying it and hence dorsiflexion of the ankle at the time of syndesmosis screw placement is totally unwarranted


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIX | Pages 8 - 8
1 May 2012
Gardner R Yousri T Holmes F Clark D Pollintine P Miles A Jackson M
Full Access

Treatment of syndesmotic injuries is a subject of ongoing controversy. Locking plates have been shown to provide both angular and axial stability and therefore could potentially control both shear forces and resist widening of the syndesmosis. The aim of this study is to determine whether a two-hole locking plate has biomechanical advantages over conventional screw stabilisation of the syndesmosis in this pattern of injury. Six pairs of fresh-frozen human cadaver lower legs were prepared to simulate an unstable Maisonneuve fracture. The limbs were then mounted on a servo-hydraulic testing rig and axially loaded to a peak load of 800N for 12000 cycles. Each limb was compared with its pair; one receiving stabilisation of the syndesmosis with two 4.5mm quadricortical cortical screws, the other a two-hole locking plate with 3.2mm locking screws (Smith and Nephew). Each limb was then externally rotated until failure occurred. Failure was defined as fracture of bone or metalwork, syndesmotic widening or axial migration >2mm. Both constructs effectively stabilised the syndesmosis during the cyclical loading within 1mm of movement. However the locking plate group demonstrated superior resistance to torque compared to quadricortical screw fixation (40.6Nm vs 21.2Nm respectively, p value <0.03). Conclusion. A 2 hole locking plate (3.2mm screws) provides significantly greater stability of the syndesmosis to torque when compared with 4.5mm quadricortical fixation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 63 - 63
1 Sep 2012
Kennedy M Leong S Mitra A Dolan M
Full Access

Classical AO teaching recommends that a syndesmosis screw should be inserted at 25 to 30 degree angle to the coronal plane of the ankle. In practice accurately judging the 25/30 degree angle can be difficult, and there are several reports based on post operative CT scans demonstrating that a significant minority of patients have poorly operatively reduced syndesmotic injuries. The CT scans of 200 normal ankles in one hundred individuals which had been performed as part a CT angiogram were retrospectively examined. The centroid of the fibula and tibia in the axial plane 15mm proximal to the talar dome was calculated. Since a force vector between the centroid of the fibula and the tibia in the axial plane should not displace the fibula relative to the tibia, a line connecting the two centroids was therefore postulated to be the ideal syndesmosis line, and also the optimum position in which to place a compression clamp after reducing the syndesmosis. Where this ideal line passed through the lateral border of the fibula, and through the medial malleolus was then noted. The ideal syndesmosis line was shown to pass through the fibula with in 2mm of the lateral cortical apex of the fibula, and the anterior half of the medial malleolus in 100% of the ankles studied. The results support the concept that in the operatively reduced syndesmosis, the anterior half of the medial malleolus can be used as a reliable guide for aiming the syndesmosis drill hole, provided that the fibular entry point is at or adjacent the lateral fibular apex. The corollary of these findings is that a screw inserted through a plate on the standard antero-lateral border of the fibula, or a plate in the anti-glide position posteriorly, cannot lie in the centroidal axis of the ankle


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 8 - 8
1 Sep 2014
Horn A McCollum G Calder J
Full Access

Background. Lateral ligament injuries of the ankle are common. They account for up to 50% of all sporting injuries. Recovery times vary, leading to time away from sport and training for the professional athlete. Predicting this time is important for the treating surgeon, the athlete and the rehabilitation team. This can be difficult as associated ankle injuries occurring at the time of the trauma may alter recovery and rehabilitation. Aim. To compare the time to return to training and sports of isolated lateral ligament injuries with more complex injuries of the ankle treated surgically and to evaluate if lateral ligament repair is safe and effective in the professional athlete. Study design: Case series; level of evidence 4. Methods. A consecutive series of professional sportsmen and women were treated operatively for radiologically and clinically confirmed grade III lateral ligament injury between 2005 and 2009. The patients were split into two groups; isolated lateral ligament injuries and those with other associated injuries. The end points studied were the time to return to training in weeks and the time to return to play in weeks. Results. There were 26 ankles in 26 patients. 16 were isolated injuries (Group A) and 10 had associated injuries (Group B). The associated injuries included, osteochondral defects (OCD) (3), deltoid ligament injury (5), syndesmotic injury (1) and deltoid ligament injury combined with an OCD (1). The mean time to return to training in group A was 61.3 days (range 55–110) and in group B was 99.5 days (63–152). The mean time to return to play in Group A was 78.2 days (range 63–127) and group B 116.7 days (82–178). The time to return to training and play was significantly shorter for the isolated lateral ligament injury group, (p=0.0003) and (p=0.0004) respectively. The only complications were two minor wound infections that responded to oral antibiotics. No patient returned for recurrent instability and all returned to their pre-injury level of play. Conclusion. Lateral ligament repair was a successful and safe procedure leading to return to pre-injury level of play for all the athletes. Time to return to training and play was significantly shorter if there were no associated injuries to the ankle. NO DISCLOSURES