Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 93 - 93
10 Feb 2023
Wang A Hughes J Fitzpatrick J Breidhahl W Ebert J Zheng M
Full Access

Interstitial supraspinatus tears can cause persistent subacromial impingement symptoms despite non operative treatment. Autologous tendon cell injection (ATI) is a non-surgical treatment for tendinopathies and tear. We report a randomised controlled study of ATI compared to corticosteroid injection (CS) as treatment for interstitial supraspinatus tears and tendinopathy. Inclusion criteria were patients with symptom duration > 6 months, MRI confirmed intrasubstance supraspinatus tear, and prior treatment with physiotherapy and ≥ one CS or PRP injection. Participants were randomised to receive ATI to the interstitial tear or corticosteroid injection to the subacromial bursa in a 2:1 ratio, under ultrasound guidance. Assessments of pain (VAS) and function (ASES) were performed at baseline, and 1, 3, 6 and 12 months post treatment. 30 participants (19 randomised to ATI) with a mean age of 50.5 years (10 females) and a mean duration of symptoms of 23.5 months. Baseline VAS pain and ASES scores were comparable between groups. While mean VAS pain scores improved in both groups at 3 months after treatment, pain scores were superior with ATI at 6 months (p=0.01). Mean ASES scores in the ATI group were superior to the CS group at 3 months (p=0.026) and 6 months (p=0.012). Seven participants in the CS group withdrew prior to 12 months due to lack of improvement. At 12 months, mean VAS pain in the ATI group was 1.6 ± 1.3. The improvements in mean ASES scores in the ATI group at 6 and 12 months were greater than the MCID (12.0 points). At 12 months, 95% of ATI participants had an ASES score > the PASS (patient acceptable symptom state). This is the first level one study using ATI to treat interstitial supraspinatus tear. ATI results in a significant reduction in pain and improvement in shoulder function


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 29 - 29
10 Feb 2023
Gupta A Jomaa M Ker A Hollman F Singh N Maharaj J Cutbush K
Full Access

Massive posterosuperior cuff tears (mRCT) retracted to the glenoid are surgically challenging and often associated with high retear rates. Primary repair is a less-favourable option and other salvage procedures such as SCR and tendon transfers are used. This study presents clinical and radiological outcomes of muscle advancement technique for repair of mRCT. Sixty-one patients (mean age 57±6, 77% males and 23% females) (66 shoulders) underwent all-arthroscopic rotator cuff repair that included supraspinatus and infraspinatus subperiosteal dissection off scapular bony fossae, lateral advancement of tendon laminae, and tension-free double-layer Lasso Loop repair to footprint. Pre-and post-operative range of motion (ROM), cuff strength, VAS, Constant, ASES, and UCLA scores were assessed. Radiologic assessment included modified Patte and Goutallier classifications. All patients had MRI at 6 months to evaluate healing and integrity of repair was assessed using Sugaya classification with Sugaya 4 and 5 considered retears. Advanced fatty degeneration (Goutallier 3-4) was present in 44% and 20% of supraspinatus and infraspinatus. Tendon retraction was to the level of or medial to glenoid in 22%, and just lateral in 66%. 50.8% mRCT extended to teres minor. Subscapularis was partially torn (Lafosse 1-3) in 46% and completely torn (Lafosse 4-5) in 20%. At mean follow-up (52.4 weeks), a significant increase in ROM, Relative Cuff Strength (from 57% to 90% compared to contralateral side), VAS (from 4 ±2.5 to 1±1.7), Constant (50±17.8 to 74 ±13.0), ASES (52 ±17.5 to 87 ±14.9), and UCLA (16± 4.9 to 30 ±4.9) scores were noted. There were six retears (10%), one failure due to P. acnes infection. 93% returned to pre-injury work and 89% of cases returned to pre-injury sport. Satisfaction rate was 96%. Muscle advancement technique for mRCT is a viable option with low retear rates, restoration of ROM, strength, and excellent functional outcomes


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_2 | Pages 1 - 1
1 Mar 2022
Lacey A Chiphang A
Full Access

16 to 34% of the population suffer from shoulder pain, the most common cause being rotator cuff tears. NICE guidance recommends using ultrasound scan (USS) or MRI to assess these patients, but does not specify which is preferable. This study assesses the accuracy of USS and MRI in rotator cuff tears in a DGH, to establish the most appropriate imaging modality. Patients who had at least two of shoulder ultrasound, MRI or arthroscopy within a seven month period (n=55) were included in this retrospective study. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were calculated using arthroscopy as the true result, and kappa coefficients calculated for each pairing. 59 comparisons were made in total. Sensitivity for MRI in full supraspinatus tears was 0.83, and for USS 0.75. Specificity for MRI in these tears was 0.75, and for USS 0.83. Values were much lower in other tears, which occurred less frequently. USS and MRI completely agreed with each other 61.3% of the time. Both modalities were only completely accurate 50% of the time. Kappa coefficient between arthroscopy and MRI for supraspinatus tears was 0.658, and for USS was 0.615. There was no statistical difference between MRI and USS sensitivity or specificity (p=1), suggesting that one modality cannot be recommended over the other for full supraspinatus tears. They also do not tend to corroborate one another, suggesting that there is no benefit from doing both scans. Further research is needed to see how both modalities can be improved to increase their accuracy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 109 - 109
1 May 2016
Tucker J Gordon J Zanes R Zuskov A Cirone J Vinciguerra J Bloebaum R Soslowsky L
Full Access

INTRODUCTION. Rotator cuff tears are common injuries which often require surgical repair. Unfortunately, repairs often fail [1] and improved repair strength is essential. P2 Porous titanium (DJO Surgical, Austin TX) has been shown to promote osseointegration [2,3] and subdermal integration [4]. However, the ability of P2Porous titanium to aid in supraspinatus tendon-to-bone repair has not been evaluated. Therefore, the purpose of this study was to investigate P2 implants used to augment supraspinatus tendon-to-bone repair in a rat model [5]. We hypothesized that supraspinatus tendon-to-bone repairs with P2 implants would allow for ingrowth and increased repair strength when compared to standard repair alone. METHODS. Thirty-four adult male Sprague-Dawley rats were used (IACUC approved). Rats received bilateral supraspinatus detachment and repair with one limb receiving P2 implant. Animals were sacrificed at time 0 (n=3), 2 weeks (n=8), 4 weeks (n=9) and 12 weeks (n=14). Limbs were either dissected for histological and SEM analysis or mechanical testing as described previously [5]. Specimens for histology and SEM were embedded in PMMA for tissue-implant interface analysis. Specimens were first viewed in SEM under BSE to detect bony ingrowth, then stained with Sanderson's Rapid Bone Stain and viewed under transmitted and polarized light for tissue ingrowth. Comparisons were made using Student's t-tests with significance at p≤0.05. RESULTS. No differences in cross-sectional area were detected at any time point (Fig 1A). Percent relaxation was significantly increased in the P2 group at 2 weeks, but not at 4 and 12 weeks (Fig 1B). Maximum load was significantly increased in the P2 group at 2 weeks, but not at 4 weeks (Fig 1C – maximum load not reported due to failure at grip at 12 weeks). Modulus was significantly increased in the P2 group at 4 weeks, but not at 2 or 12 weeks (Fig 1D). No differences were detected in stiffness at any time point (data not shown). BSE analysis demonstrated bone ingrowth (Fig 2) and histological analysis showed soft tissue integration (Fig 3). DISCUSSION. Results indicate superior mechanical properties in the P2 group at 2 and 4 weeks, and tissue ingrowth at all time points. Importantly, at 2 weeks, the P2group had 76% increased maximum load compared to standard repair. As supraspinatus tendon re-tears are extremely common early [1] and occur at the tendon-to-bone interface, this finding supports the reduction of re-tear risk with the P2 implant. Although no differences were detected in maximum load at 4 weeks, the increase at 2 weeks denotes that P2 implants improved early tendon-to-bone healing. Additionally, at 4 weeks, the P2 implant group had significantly increased elastic modulus, further supporting increased mechanical properties due to the P2 implant. Clinically, improved early healing might allow faster rehabilitation and associated recovery. This study demonstrates that the P2 implant improves tendon-to-bone healing up to 4 weeks (with no detrimental effects at longer time points), suggesting that P2 porous titanium may be of benefit for use in clinical rotator cuff repairs


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 17 - 17
1 Sep 2012
Boynton E Kim SY Rindlisbacher T Bleakney B Rosser B
Full Access

Purpose. Full-thickness tendon tears of the supraspinatus (SP) are common and can have a significant impact on shoulder function. To optimally treat supraspinatus tendon tears an accurate understanding of its musculotendinous architecture is needed. We have previously shown that the architecture of supraspinatus is complex. It has architecturally distinct regions: anterior and posterior, each of which is further subdivided into superficial, middle and deep parts (Kim et al., 2007). Data of FBL and PA of the torn supraspinatus could enhance clinical decision making and guide rehabilitative treatments (Ward et al., 2006). Currently, however, in vivo US quantification of the fiber bundle architecture of the distinct regions of supraspinatus in subjects with full-thickness tendon tears has not been investigated. PURPOSE: To quantify architectural parameters within the distinct regions of supraspinatus in subjects with a full-thickness tendon tear using the US protocol that we previously developed (Kim et al., 2010), and to compare findings with age and gender matched normal controls. Method. Twelve SP from eight subjects, mean age 576.0 years, were scanned using an US scanner (12 MHz). The SP was scanned in relaxed and contracted states. For the contracted state, SP was scanned with the shoulder in neutral rotation and 60 of active abduction. Fiber bundles of the anterior region (middle and deep) and posterior region (deep) could be visualized and measured. Muscle thickness, FBL, and PA were computed from US scans. Data was analyzed using Mann-Whitney and Wilcoxon Signed Rank Tests (P<0.05). Results. Intra-and inter-rater measurements of FBL were strongly correlated with no significant difference between measurements (P<0.001). In the anterior region, mean FBL did not significantly differ between the pathologic subjects and normal controls. In the pathologic subjects, mean PA was smaller compared to normal controls. The difference was significant between the subjects with a tear and retraction and normal controls (P<0.05). For the posterior region, mean FBL was shorter in the pathologic subjects compared to normal controls. The difference was significant between the subjects with a tear and retraction and normal controls (P<0.05). Conclusion. Findings suggest that significant FBL and PA changes are found with full-thickness tendon tears of SP and different regions of the muscle are impacted differently. Pennation angles are largely impacted in the anterior region and FBL in the posterior. The presence of tendon retraction was found to be related to the amount of change in architectural parameters. Data from this study may be useful to model muscle-joint behavior of the pathologic shoulder. This US protocol may be beneficial to carry out a larger study to determine which comes first, architectural changes in the muscle, or tendon tearing. If we identify changes in muscle architecture predate tendon pathology, we could develop techniques to prevent tendon tearing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 32 - 32
1 Mar 2021
Lapner P McRae S Leiter J McIlquham K MacDonald P
Full Access

Controversy exists regarding the optimal technique for arthroscopic rotator cuff repair. No previous comparative trials have reported on the long-term follow-up of single and double row fixation in arthroscopic cuff repair. The purpose of this study was to compare the long-term functional outcomes of single-row and double-row suture techniques for repair of the rotator cuff 10-years post-operatively. Ninety patients undergoing arthroscopic rotator cuff repair were randomized to receive either single-row or double-row repair. The primary objective was to compare the Western Ontario Rotator Cuff Index (WORC) score 10-years post-operatively. Secondary objectives included comparison of the Constant, and American Shoulder and Elbow Surgeons (ASES) scores and supraspinatus strength between groups. Out of 90 patients originally randomized, 57 returned for the long-term 10-year follow-up. Baseline demographic data did not differ between groups. The WORC score was not significantly different between groups at long-term follow-up (p=0.13). No statistical differences were observed between groups for the Constant (p=0.51), ASES (p=0.48) scores, or strength scores (p=0.93). A significant improvement was observed between pre-operative and the final 10-year follow-up. There were no differences observed in all outcomes between two and 10-years post-operatively. No statistically significant differences in functional or quality of life outcomes were identified between single-row and double-row fixation techniques at long-term follow-up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 88 - 88
1 May 2012
N.L. M A.J. H J.H. R Y. X U.G. F G.A. M I.B. M
Full Access

The cellular mechanisms of tendinopathy remain unclear, particularly with respect to the role of inflammation in early disease. We have previously identified increased levels of inflammatory cytokines in an early human model of tendinopathy and sought to extend these studies to the cellular analysis of tissue. Purpose. To characterise inflammatory cell subtypes in early human tendinopathy we explored the phenotype and quantification of inflammatory cells in torn and control tendon samples. Design. Controlled laboratory study. Methods. Torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from twenty patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery. Tendon biopsies were evaluated immunohistochemically by quantifying the presence of macrophages (CD68 and CD206), T cells (CD3), mast cells (Mast cell tryptase) and vascular endothelium (CD34). Results. Subscapularis tendon biopsies obtained from patients with torn supraspinatus tendon exhibited significantly greater macrophage, mast cell and T cell expression compared to either torn supraspinatus samples or control subscapularis derived tissue (p< 0.01). Inflammatory cell infiltrate correlated inversely (r=0.5, p< 0.01) with rotator cuff tear size, with larger tears correlating with a marked reduction in all cell lineages. There was a modest but significant correlation between mast cells and CD 34 expression (r= 0.4, p< 0.01) in pre-rupture subscapularis tendon. Conclusion. We provide evidence for an inflammatory cell infiltrate in early mild/moderate human supraspinatus tendinopathy. In particular, we demonstrate significant infiltration of mast cells and macrophages suggesting a role for innate immune pathways in the events that mediate early tendinopathy. Further mechanistic studies to evaluate the net contribution and hence therapeutic utlity of these cellular lineages and their downstream processes may reveal novel therapeutic approaches to the management of early tendinopathy


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 33 - 33
1 Mar 2021
Woodmass J McRae S Malik S Dubberley J Marsh J Old J Stranges G Leiter J MacDonald P
Full Access

When compared to magnetic resonance imaging (MRI), ultrasound (US) performed by experienced users is an inexpensive tool that has good sensitivity and specificity for diagnosing rotator cuff (RC) tears. However, many practitioners are now utilizing in-office US with little to no formal training as an adjunct to clinical evaluation in the management of RC pathology. The purpose of our study was to determine if US without formal training is effective in managing patients with a suspected RC tear. This was a single centre prospective observational study. Five fellowship-trained surgeons each examined 50 participants referred for a suspected RC tear (n= 250). Patients were screened prior to the consultation and were included if ≥ 40 years old, had an MRI of their affected shoulder, had failed conservative treatment of at least 6 months, and had ongoing pain and disability. Patients were excluded if they had glenohumeral instability, evidence of major joint trauma, or osteonecrosis. After routine clinical exam, surgeons recorded their treatment plan (“No Surgery”, “Uncertain”, or “Surgery”). Surgeons then performed an in-office diagnostic US followed by an MRI and documented their treatment plan after each imaging study. Interrater reliability was analyzed using a kappa statistic to compare clinical to ultrasound findings and ultrasound findings to MRI, normal and abnormal categorization of biceps, supraspinatus, and subscapularis. Following clinical assessment, the treatment plan was recorded as “No Surgery” in 90 (36%), “Uncertain” in 96 (39%) of cases, “Surgery” in 61 (25%) cases, and incomplete in 3 (2%). In-office US allowed resolution of 68 (71%) of uncertain cases with 227 (88%) of patients having a definitive treatment plan. No patients in the “No Surgery” group had a change in treatment plan. After MRI, 16 (6%) patients in the “No Surgery” crossed-over to the “Surgery” group after identification of full-thickness tears, larger than expected tears or alternate pathology (e.g., labral tear). The combination of clinical examination and in-office US may be an effective method in the initial management of patients with suspected rotator cuff pathology. Using this method, a definitive diagnosis and treatment plan was established in 88% of patients with the remaining 12% requiring an MRI. A small percentage (6%) of patients with larger than expected full-thickness rotator cuff tears and/or alternate glenohumeral pathology (e.g., labral tear) would be missed at initial evaluation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 20 - 20
1 Nov 2016
Gobezie R
Full Access

Reverse total shoulder arthroplasty (RTSA) was designed to treat the cuff-deficient shoulder with arthritis and irreparable rotator cuff tears of the supraspinatus and infraspinatus tendons. The results of RTSA in this patient population have been very good and reliable in the majority of cases. However, it has also been reported that patients whose rotator cuff tear involves the supraspinatus, infraspinatus and teres minor and who demonstrate a ‘horn-blower's sign’ do very poorly if a muscle transfer is not performed to improve external rotation in these shoulders in abduction. The loss of the teres minor in these patients results in grave difficulty for the patient attempting to perform their activities of daily living even if they can obtain reasonable good forward flexion. The muscle transfer that is most commonly used for these select patients is a latissmus dorsi tendon transfer in conjunction with RTSA. The purpose of this talk is to review the pathology of this problem and review the technique for its surgical treatment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 49 - 49
1 Jul 2020
Lapner P Laneuville O Uhthoff HK Zhang T Howard L Pollock J Ruggiero S Trudel G
Full Access

Tears of the rotator cuff tendons are a very common entity. Despite recent advances in arthroscopic rotator cuff repair, the re-tear rate remains high. Thus, new methods to improve healing rates following rotator cuff repair must be sought. The purpose of this prospective randomized double-blind controlled study is to compare the functional outcomes and healing rates of an adjuvant pre-operative bone microfracture technique prior to arthroscopic cuff repair. Patients undergoing arthroscopic rotator cuff repair were randomized to receive either a percutaneous bone microfracture of the supraspinatus footprint or a “soft tissue needling” technique, in which the pin was passed through the peripheral edges of the rotator cuff, five-seven days prior to index surgery, under ultrasound guidance. Follow-ups were completed at 3, 6, 12 and 24 months post-operatively. Healing status was determined by ultrasound at 6 and 24 months. The primary objective was to compare the WORC score at 24 months. Secondary objectives included the healing status via ultrasound, the Constant, and the ASES scores. A sample size calculation determined that 90 patients provided 80% power to detect a statistical difference between groups. Baseline demographic data did not differ between groups. No statistical differences were detected in the WORC outcome at any time points (p=0.47, baseline, p=0.60, 3 months, p=0.79, 6 months, p=0.50, 12 months, p=0.54, 24 months). Healing rates did not differ between groups (P=0.34) and no differences were observed in the ASES or Constant Scores at all time-points. Statistically significant improvements occurred in both groups from baseline to all time points in all clinical outcome scores (p < 0 .0001). No statistically significant differences in primary or secondary outcomes were identified between pre-operative bone microfracture and soft tissue needling techniques prior to arthroscopic rotator cuff repair. This study does not support pre-operative microfracture as a adjuvant technique prior to arthroscopic cuff repair


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 7 - 7
1 Sep 2012
Papakonstantinou M Pan W Le Roux C Richardson M
Full Access

Shoulder girdles of 20 cadavers (68–94yrs) were harvested. The anterior (ACHA) and posterior circumflex humeral arteries (PCHA) were injected with ink and the extra and intraosseous courses of the dyed vasculature dissected through the soft tissues and bone to the osteotendinous junctions of the rotator cuff. The ink injection and bone dissection method was newly developed for the study. Rates of cross-over at the osteotendinous juntion were 75% in the supraspinatus, 67% in subscapularis, 33% in infraspinatus and 20% in teres minor. The supraspinatus and subscapularis insertions were vascularised by the arcuate artery, a branch of the ACHA. The insertions of the infraspinatus and teres minor were supplied by an unnamed terminal branch of the PCHA. The insertions of the rotator cuff receive an arterial supply across their OTJ's in 50% of cases. This may explain observed rates of AVN in comminuted proximal humeral fractures. The terminal branch of the PCHA supplying the infraspinatus and teres minor insertions was named the “Posterolateral Artery”. Finally, the new method employed for this study which allowed for direct visualisation of intraosseous vasculature, will enhance our understanding of skeletal vascular anatomy and have clinical applications in orthopaedic and reconstructive surgery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 19 - 19
1 Jul 2013
Rashid M Butt U Birch A Crank S Temperley D Freemont A Trail I
Full Access

Our aim was to accurately determine whether muscle atrophy and fatty infiltration are reversible following cuff repair. Patients with a repairable cuff-tear were recruited and assessed clinically and radiologically (Magnetic Resonance Imaging). At surgery, supraspinatus was biopsied. Post-operatively, patients underwent clinical evaluation at standardised intervals, with further MRI and an ultrasound guided biopsy of supraspinatus at 12 months. MRI was used to characterize cuff-tears and determine the degree of muscle atrophy and fatty infiltration. Biopsy samples were fixed on-site and transported for processing. Morphometric assessments of myofibres were made and mean cross-sectional areas calculated using validated techniques. The pathologist was blinded to sample details. Statistical analysis was performed to assess differences in mean myofibre area following cuff repair and correlated with radiological findings. Eight patients were available for completed histological and radiological analysis. Six (two re-tears) demonstrated sizeable and highly statistically significant improvements in mean myofibre cross-sectional area (P=0.000–0.0253). Of the two not showing any increase in myofibre area, neither result was statistically significant (P=0.06, 0.2); one was a re-tear and one was a repair of a partial-thickness tear. Radiologically, the muscle and fatty changes had not demonstrably changed. Our finding that myofibre cross-sectional area increases following cuff repair suggests muscle atrophy is a potentially reversible process. Even with re-tears, improvements were seen. MRI features of fatty infiltration and muscle atrophy were not seen to improve however. It is likely that radiological assessment is not sensitive enough to demonstrate the reversibility of muscle atrophy seen on histological analysis at one year


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 53 - 53
1 May 2012
A. M C. W L. N
Full Access

Aim. Biomechanical models of the shoulder have been used to measure forces and glenohumeral pressures. Their results have been found to vary. The aim of this study was to produce a biomechanical model to replicate the biomechanical principles of the glenohumeral joint and to measure the centre of pressure on the glenoid through a mid-range of arm movement with an intact and a compromised rotator cuff. Method. The model consisted of anatomic saw-bones of a scapula and proximal humerus with calibrated extension springs to mimic rotator cuff muscles. Glenoid pressures were measured using pressure sensitive film. The joint was examined through a mid-range of movement with an intact rotator cuff and a supraspinatus deficiency. Results. In the normal cuff model, in neutral, the centre of pressure was in the centre of the glenoid and migrated inferiorly on abduction, rotation and 45° of flexion. The only exception to this was 90° flexion and 35° extension. Concavity compression force rose in internal/external rotation, was steady on flexion/extension but dropped on abduction. In the supraspinatus-deficient model, the centre of pressure dropped to the inferior lip in neutral and rose on any movement with extremes of flexion and abduction, resulting in subacromial impingement. Concavity compression force rose slightly on flexion and extension. On abduction, the force rose as much as three times that of the normal cuff. Discussion. The results suggest that the humeral joint reaction force rests in the centre of the glenoid and is driven inferiorly on arm movement. Loss of supraspinatus reverses this pattern and leads to impingement. These results would be in keeping with osteoarthritic patterns in vivo and may have a bearing on glenoid prosthesis design. Conclusion. The glenohumeral joint demonstrated inferior migration of the humeral reaction force on elevation of the arm. Cuff pathology leads to breakdown of this mechanism


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 219 - 219
1 Sep 2012
Wilson J Robinson P Norburn P Roy B
Full Access

The indication for rotator cuff repair in elderly patients is controversial. Methods. Consecutive patients over the age of 70 years, under the care of a single surgeon, receiving an arthroscopic rotator cuff repair were reviewed. Predominantly, a single row repair was performed using one (34 cases) or two (30) 5mm Fastin, double-loaded anchors. Double-row repair was performed in four cases. Subacromial decompression and treatment of biceps pathology were performed as necessary. Data were collected from medical records, digital radiology archives and during clinic appointments. Pain, motion, strength and function were quantified with the Constant-Murley Shoulder Outcome Score, administered pre operatively and at 1-year post operatively. Ultrasound scans were performed at one year to document integrity of the repair. Results. Sixty-nine arthroscopic cuff repairs were identified in 68 patients. The mean age was 77 years (70–86). The median ASA grade was 2 (79%). The dominant side was operated on in 68% of cases. A range of tear sizes were operated on (5 small, 17 moderate, 29 large and 18 massive). The tendons involved in the tear also varied (supraspinatus 12, supra and infraspinatus 53, supraspinatus and subscapularis 2, supraspinatus infraspinatus and subscapularis 2). Re-rupture occurred in 20 cases (29%). The mean Constant score increased from 23 (95% CI 19–26) to 59 (54–64) (P< 0.001). Where the repair remained sound, Constant score improved 42 points (95%CI 36–48). If the cuff re-ruptured, constant score also increased on average 12 points (95% CI 2–21). Re-rupture rate was highest for massive cuff repairs: ten out of eighteen (56%). Conclusion. Arthroscopic rotator cuff repair in the elderly is a successful procedure. Approximately seven out of ten repairs remained intact after one year. Even where re-rupture occurs, a significant improvement in the Constant score was found


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 152 - 152
1 May 2012
Haber M Dolev E Biggs D Appleyard R
Full Access

This study looks at the dynamic tendon-to-bone contact properties of rotator cuff (RC) repairs—comparing single row repairs (SRR) with double row transosseous- equivalent (TOE) repairs. It was postulated that relaxation during, and movement following, the repair would significantly compromise contact properties and therefore, the ability of the tendon healing. Simulated tears were created in the supraspinatus tendon of six cadaveric human shoulders. A SRR was then performed using the OPUS System, creating two horizontal mattress sutures. An I-Scan electronic pressure-sensor (Tekscan, Boston, MA) was placed between the supraspinatus tendon and bone. The arm was then rested for 300secs (relaxation) before being passively moved twice through a range-of-motion (0-90 degrees abduction, 0-45 external and 0-45 internal rotation) and finally returned to neutral. The contact properties were recorded throughout each movement. The procedure was then repeated using two TOE techniques: parallel sutures (TOE-P) and a cross over suture pattern (TOE-C). While peak pressures during the repair were higher in the two TOE repairs, all three methods demonstrated relaxation over 300s such that there was no significant diference in contact pressures at the end of this time. TOE parallel and cross-over repairs demonstrated no significant change in mean TTB contact pressure, force and area during abduction, external rotation and return to neutral, when compared to the 300sec relaxation state. TOE-C demonstrated a higher contact force on internal rotation (+53%). The SRR demonstrated a significant drop in contact force on abduction (−63%), and return to neutral (−43%) and a trend on external rotation (−34%). SRR exhibited no change on internal rotation. There have been very few biomechanical studies with which observe RC repair contact properties dynamically. Relaxation of the repair can be partially reversed. Significant decrease in contact area with SRR during movement occurred, compared to the TOE repairs, which remains unaltered. This is an important consideration when determining postoperative rehabilitation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 16 - 16
1 Nov 2016
Degen R Carbone A Carballo C Zong J Chen T Lebaschi A Ying L Deng X Rodeo S
Full Access

Bone marrow concentrates are being used to augment soft tissue healing. However, only 0.01% of these cells meet the criteria of a mesenchymal stem cell (MSC), which likely accounts for the variability in reported results. Previous studies using an established rat rotator cuff repair model have demonstrated that bone marrow-derived MSCs had no effect on healing. In this study we evaluated the effect of purified human MSCs on rotator cuff healing in an athymic rat model. Hypothesis: Purified human MSCs added to the repair site will improve biomechanical strength and fibrocartilage formation of the healing tendon. Fifty-two athymic rats underwent unilateral detachment and repair of the supraspinatus tendon with either fibrin glue (control) or fibrin glue with 106 hMSCs (experimental) applied at the repair site. Flow cytometry verified the stem cell phenotype of the cells as CD73+, CD90+, CD105+, CD14-, CD34- and CD45-. Rats were sacrificed at 2 and 4 weeks, with 10 used for biomechanical testing and 3 for histologic analysis from each group. Biomechanical testing revealed a significant increase in failure load (11.5±2.4N vs. 8.5±2.4N, p=0.002) and stiffness (7.1±1.2 N/mm vs. 5.7±2.1 N/mm, p0.17). These data demonstrate the potential for stem cells to augment tendon healing. This is the first study to use purified stem cells, rather than simple bone marrow concentrate. In the future, cell sorting techniques and culture expansion could be used to select and expand the small population of true stem cells in bone marrow. Furthermore, healing could potentially be improved with repeat cell injection at an additional post-operative time point


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 21 - 21
1 Nov 2016
Sperling J
Full Access

The standard approach is through the deltopectoral interval. Among patients with prior incisions, one makes every effort to either utilise the old incision or to incorporate it into a longer incision that will allow one to approach the deltopectoral interval and retract the deltoid laterally. The deltopectoral interval is most easily developed just distal to the clavicle, where there is a natural infraclavicular triangle of fat that separates the deltoid and pectoralis major muscles even in very scarred or stiff shoulders. Typically, the deltoid is retracted laterally leaving the cephalic vein on the medial aspect of the exposure. The anterior border of the deltoid is mobilised from the clavicle to its insertion on the humerus. The anterior portion of the deltoid insertion together with the more distal periosteum of the humerus may be elevated slightly. The next step is to identify the plane between the conjoined tendon group and the subscapularis muscle. Dissection in this area must be done very carefully due to the close proximity of the neurovascular group, the axillary nerve, and the musculocutaneous nerve. Scar is then released from around the base of the coracoid. The subacromial space is freed of scar and the shoulder is examined for range of motion. Particularly among patients with prior rotator cuff surgery, there may be severe scarring in the subacromial space. Internal rotation of the arm with dissection between the remaining rotator cuff and deltoid is critical to develop this plane. If external rotation is less than 30 degrees, one can consider incising the subscapularis off bone rather than through its tendinous substance. For every 1 cm that the subscapularis is advanced medially, one gains approximately 20 to 30 degrees of external rotation. The rotator interval between the subscapularis and supraspinatus is then incised. This release is then continued inferiorly to incise the inferior shoulder capsule from the neck of the humerus. This is performed by proceeding from anterior to posterior with progressive external rotation of the humerus staying directly on the bone with electrocautery and great care to protect the axillary nerve. The key for glenoid exposure as well as improvement in motion is deltoid mobilization, a large inferior capsular release, aggressive humeral head cut and osteophyte removal


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 84 - 84
1 Nov 2016
Hawkins R Thigpen C Kissenberth M Hunt¸ S.J. Tolan Q Swinehart S Gutta C Tokish J
Full Access

Studies have shown that the trees minor plays an important role after total (TSA) and reverse (RSA) shoulder arthroplasty, as well as in maintenance of function in the setting of infraspinatus wasting. In this regard, teres minor hypertrophy has been described as a compensatory change in response to this infraspinatus wasting, and has been suggested that this compensatory hypertrophy may mitigate the loss of infraspinatus function in the patient with a large rotator cuff tear. The purpose of this study was to determine the prevalence of teres minor hypertrophy in a cohort of patients undergoing rotator cuff repair, and to determine its prognostic effect, if any, on outcomes after surgical repair. Over a 3 year period, all rotator cuff repairs performed in a single practice by 3 ASES member surgeons were collected. Inclusion criteria included both preoperative and postoperative validated outcomes measures (minimum 2 year), and preoperative Magnetic Resonance Imaging (MRI) scanning. 144 patients met all criteria. MRIs were evaluated for rotator cuff tear tendon involvement, tear size, and Goutallier changes of each muscle. In addition, occupational ratios were determined for the supraspinatus, infraspinatus, and teres minor muscles. Patients were divided into 2 groups, based upon whether they had teres minor hypertrophy or not, based on a previously established definition. A 2 way ANOVA was used to determine the effect of teres minor hypertrophy(tear size by hypertrophy) and Goutallier. Teres minor hypertrophy was a relatively common finding in this cohort of rotator cuff patients, with 51% of all shoulders demonstrating hypertrophy. Interestingly, in patients without an infraspinatus tear, teres minor hypertrophy was still present in 19/40 (48%) of patients. Teres minor hypertrophy had a significant, negative effect ASES scores after rotator cuff repair in patients with and without infraspinatus tearing, infraspinatus atrophy, and fatty infiltrative changes (P<0.05). In general, the presence of teres minor hypertrophy showed 10–15% less improvement (Figure 1) than when no hypertrophy was present, and this was consistent across all tear sizes, independent of Goutallier changes. Teres minor hypertrophy is a common finding in the setting of rotator cuff tearing, including in the absence of infraspinatus tearing. Contrary to previous publications, the presence of teres minor hypertrophy in patients with rotator cuff repair does not appear to be protective as a compensatory mechanism. While further study is necessary to determine the mechanism or implication of teres minor hypertrophy in setting of rotator cuff repair, our results show it is not a positive of outcomes following rotator cuff repair


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 79 - 79
1 Nov 2016
Huebner K O'Gorman D Faber K
Full Access

Rotator cuff repair is performed to treat shoulder pain and disability. Failure of the tendon repair site is common; one strategy to improve healing is to enforce a period of post-operative immobilisation. Immobilisation may have unintended effects on tendon healing. Tenocytes under uniaxial strain form more organised collagen and up regulate expression of proliferative genes. Vitamin C (ascorbic acid), an anti-oxidant that is a co-factor for collagen synthesis, has also been reported to enhance collagen deposition and organisation. The purpose of this study was to compare human tenocyte cultures exposed to uniaxial cyclical strain with or without slow-release ascorbic acid (ascorbyl-2 phosphate) to determine their individual and combined effects on tissue remodelling and expression of tissue repair genes. Rotator cuff tissues were collected from degenerative supraspinatus tears from eight patients. Tenocytes were incorporated into 3D type I collagen culture matrices. Cultures were divided into four groups: 1) ascorbic acid (0.6mMol/L) + strain (1%–20% uniaxial cyclic strain at 0.1 Hz), 2) ascorbic acid unstrained, 3) strain + vehicle 4) unstrained + vehicle. Samples were fixed in paraffin, stained with picrosirius red and analysed with circular polarising light. A second set of cultures were divided into three groups: 1) 0.5mM ascorbic acid, 2) 1mM ascorbic acid, 3) vehicle cultured for 24, 72, 120 and 168 hours. Cell-free collagen matrix was used as a control. Tenocyte proliferation was assessed using the water soluble tetrazolium-1 (WST1) assay and f tissue repair gene expression (TGFB1, COL1A1, FN1, COLIII, IGF2, MMP1, and MMP13), were analysed by qPCR. The data were analysed using a Split model ANOVA with contrast and bonferroni correction and a one-way ANOVAs and Tukey's test (p<0.05 was significant). Our results indicated that unstrained cultures with or without exposure to slow release ascorbic acid exhibited greater picrosirius red birifringency and an increase in collagen fiber deposition in a longitudinal orientation compared to strained tenocytes. We found that slow release ascorbic acid promoted significant dose and culture-time dependent increases in tenocyte proliferation (p<0.05) but no obvious enhancement in collagen deposition was evident over cultures without ascorbic acid supplementation. Based on these data, applying strain to tenocytes may result in less organised formation of collagen fibers, suggestive of fibrotic tissue, rather than tendon remodelling. This may indicate that a short period of immobilisation post-rotator cuff repair is beneficial for the healing of tendons. Exposure to slow release ascorbic acid enhanced tenocyte proliferation, suggesting that supplementation with Vitamin C may improve tendon repair post-injury or repair. Future studies will assess levels of tissue repair-associated proteins as well as comparing traumatic and degenerative rotator cuff tears to healthy uninjured rotator cuff tissue