Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 108 - 108
10 Feb 2023
Guo J Blyth P Clifford K Hooper N Crawford H
Full Access

Augmented reality simulators offer opportunities for practice of orthopaedic procedures outside of theatre environments. We developed an augmented reality simulator that allows trainees to practice pinning of paediatric supracondylar humeral fractures (SCHF) in a radiation-free environment at no extra risk to patients. The simulator is composed of a tangible child's elbow model, and simulated fluoroscopy on a tablet device. The treatment of these fractures is likely one of the first procedures involving X-ray guided wire insertion that trainee orthopaedic surgeons will encounter. This study aims to examine the extent of improvement simulator training provides to real-world operating theatre performance.

This multi-centre study will involve four cohorts of New Zealand orthopaedic trainees in their SET1 year. Trainees with no simulator exposure in 2019 - 2021 will form the comparator cohort. Trainees in 2022 will receive additional, regular simulator training as the intervention cohort. The comparator cohort's performance in paediatric SCHF surgery will be retrospectively audited using routinely collected operative outcomes and parameters over a six-month period. The performance of the intervention cohorts will be collected in the same way over a comparable period. The data collected for both groups will be used to examine whether additional training with an augmented reality simulator shows improved real-world surgical outcomes compared to traditional surgical training. This protocol has been approved by the University of Otago Health Ethics committee, and the study is due for completion in 2024.

This study is the first nation-wide transfer validity study of a surgical simulator in New Zealand. As of September 2022, all trainees in the intervention cohort have been recruited along with eight retrospective trainees via email. We present this protocol to maintain transparency of the prespecified research plans and ensure robust scientific methods. This protocol may also assist other researchers conducting similar studies within small populations.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 7 - 7
1 Jul 2020
Schaeffer E Teo T Cherukupalli A Cooper A Aroojis A Sankar W Upasani V Carsen S Mulpuri K Bone J Reilly CW
Full Access

The Gartland extension-type supracondylar humerus fracture is the most common elbow fracture in the paediatric population. Depending on fracture classification, treatment options range from nonoperative treatment such as taping, splinting or casting to operative treatments such as closed reduction and percutaneous pinning or open reduction. Classification variability between surgeons is a potential contributing factor to existing controversy over nonoperative versus operative treatment for Type II supracondylar fractures. The purpose of this study was to investigate levels of agreement in classification of extension-type supracondylar humerus fractures using the Gartland classification system. A retrospective chart review was conducted on patients aged 2–12 years who had sustained an extension-type supracondylar fracture and received either operative or nonoperative treatment at a tertiary children's hospital. De-identified baseline anteroposterior (AP) and lateral plain elbow radiographs were provided along with a brief summary of the modified Gartland classification system to surgeons across Canada, United States, Australia, United Kingdom and India. Each surgeon was blinded to patient treatment and asked to classify the fractures as Type I, IIA, IIB or III according to the classification system provided. A total of 21 paediatric orthopaedic surgeons completed one round of classification, of these, 15 completed a second round using the same radiographs in a reshuffled order. Kappa values using pre-determined weighted kappa coefficients were calculated to assess interobserver and intraobserver levels of agreement. In total, 60 sets of baseline elbow radiographs were provided to survey respondents. Interobserver agreement for classification based on the Gartland criteria between surgeons was a mean of 0.68, 95% CI [0.67, 0.69] (0.61–0.80 considered substantial agreement). Intraobserver agreement was a mean of 0.80 [0.75, 0.84]. (0.61–0.80 substantial agreement, 0.81–1 almost perfect agreement). Radiographic classification of extension-type supracondylar humerus fractures at baseline demonstrated substantial agreement both between and within surgeon raters. Levels of agreement are substantial enough to suggest that classification variability is not a major contributing factor to variability in treatment between surgeons for Type II supracondylar fractures. Further research is needed to compare patient outcomes between nonoperative and operative treatment for these fractures, so as to establish consensus and a standardized treatment protocol for optimal patient care across centres


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 13 - 13
1 Dec 2022
Nogaro M Bekmez S Tan Y Maguire B Camp M Narayanan U
Full Access

Over 500 supracondylar humerus fractures (SCHF) are treated at our institution each year. Our standard post-operative pathway includes a 3-week visit for splint removal, wire removal, and radiographs. Subsequent follow-up occurs at 12 weeks for a clinical examination. In an effort to minimize unnecessary follow-up visits, we investigated whether photographs and/or patient-reported outcome measure (PROM) scores could identify patients who do not need routine 3-month in-person follow-up. At the 3-month visit, 248 SCHF patients (mean 6.2 yrs; 0.75-11yrs) had bilateral elbow motion (ROM) and carrying angles measured; and photographs documenting frontal and sagittal alignment of both injured and uninjured upper extremities, in both maximum elbow flexion and extension. Two independent assessors made the same measurements off the clinical photographs to compare these with the clinical measurements. Two PROMs: Self-Assessment Questionnaire (SAQ: 0 best to 14 worst) and QuickDASH (0 best to 100 worst) were completed at the 3-month visit. Inter-rater reliability of the photograph measurements was excellent (Kappa: 0.88-0.93), but weakly concordant with clinical measurements (carrying angle Kappa=0.51;max flexion Kappa=0.68;max extension Kappa=0.64). SAQ moderately correlated with QuickDASH (Kappa=0.59) and performed better at identifying patients with abnormalities. SAQ score ≥ 4 identified patients meeting 3-month follow-up criteria, with sensitivity: 36.1%; specificity: 96.8% and negative-predictive-value (NPV): 87%. We did not find that photographs were reliable. Although SAQ-score has high NPV, a more sensitive fracture-specific PROM is needed to identify patients who do not need a 3-month follow-up visit


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 15 - 15
1 Dec 2022
Lemieux V Schwartz N Bouchard M Howard AW
Full Access

Timely and competent treatment of paediatric fractures is paramount to a healthy future working population. Anecdotal evidence suggests that children travel greater distances to obtain care compared to adults causing economic and geographic inequities. This study aims to qualify the informal regionalization of children's fracture care in Ontario. The results could inform future policy on resource distribution and planning of the provincial health care system. A retrospective cohort study was conducted examining two of the most common paediatric orthopaedic traumatic injuries, femoral shaft and supracondylar humerus fractures (SCH), in parallel over the last 10 years (2010-2020) using multiple linked administrative databases housed at the Institute for Clinical Evaluative Sciences (ICES) in Toronto, Ontario. We compared the distance travelled by these pediatric cohorts to clinically equivalent adult fracture patterns (distal radius fracture (DR) and femoral shaft fracture). Patient cohorts were identified based on treatment codes and distances were calculated from a centroid of patient home forward sortation area to hospital location. Demographics, hospital type, and closest hospital to patient were also recorded. For common upper extremity fracture care, 84% of children underwent surgery at specialized centers which required significant travel (44km). Conversely, 67% of adults were treated locally, travelling a mean of 23km. Similarly, two-thirds of adult femoral shaft fractures were treated locally (mean travel distance of 30km) while most children (84%) with femoral shaft fractures travelled an average of 63km to specialized centers. Children who live in rural areas travel on average 51km more than their adult rural-residing counterparts for all fracture care. Four institutions provide over 75% of the fracture care for children, whereas 22 institutions distribute the same case volume in adults.?. Adult fracture care naturally self-organizes with proportionate distribution without policy-directed systemization. There is an unplanned concentration of pediatric fracture care to specialized centers in Ontario placing undue burden on pediatric patients and inadvertently stresses the surgical resources in a small handful of hospitals. In contrast, adult fracture care naturally self-organizes with proportionate distribution without policy-directed systemization. Patient care equity and appropriate resource allocation cannot be achieved without appropriate systemization of pediatric fracture care


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 11 - 11
1 Sep 2014
Rawoot A du Toit J Ikram A
Full Access

Aims. Comparison of the outcome between the supine or prone positioned child with a supracondylar humerus fracture by measuring anaesthetic and operating time, functional outcomes and complications. Methods. All children with isolated Gartland 2 and 3 supracondylar humerus fractures were who were admitted to our institute, were asked to participate in the the study. For surgery, the participating children were either operated on in a ‘supine’ or ‘prone’ position. The children were randomly allocated to either the ‘supine’ or ‘prone’ position. The fractures were preferably treated by closed reduction and percutaneous pinning with k-wires. However, if the fracture proved difficult to reduce, we proceeded to open reduction via medial and lateral approach. All fractures were stabilized with one medial and one lateral k-wire. The children were immobilized in a reinforced above elbow back-slab. Total anaesthetic and surgical time were meticulously recorded. Patients were followed up in our outpatient clinic at one week, four weeks (at which time the k-wires were removed). Three months post operatively, elbow extension, flexion and total range of movement was assessed in all children. Results Twenty children with isolated Gartland 2 and 3 supracondylar humerus fractures were included in this study. Nine children (5 ± 1 years, 7 boys and 2 girls) were operated on in a prone position, while 11 children (6 ± 2 years, 10 boys and 1 girls) were operated on in a supine position. Results. The anaesthetic time was significantly longer in the prone (20 ± 8 min) than in the supine position(10 ± 3 min) (p = 0.001). In line with this, surgical time showed a tendency to also be longer in prone (44 ± 36 min) than supine position (18 ± 18 min) (p = 0.08). No differences between prone and supine operated children was found for elbow extension (4.4 ± 7.7° vs. 3.6 ± 7.1°, respectively (p = 0.81)), elbow flexion (129.4 ± 8.8° vs. 127.0 ±8.8°, respectively (p = 0.67)) and/ or elbow range of motion (125.0 ± 16.0° vs. 124.1 ± 14.6°, respectively (p = 0.90)). Conclusion. As no differences were found in elbow mobility 3 months post-operatively and anesthetic and surgical time tends to be longer in a prone position, this study suggests that operating children with Gartland 2 and 3 supracondylar humerus fractures in a supine position is more favorable. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 93 - 93
1 Dec 2016
Mulpuri K Dobbe A Schaeffer E Miyanji F Alvarez C Cooper A Reilly C
Full Access

Closed reduction and percutaneous pinning has become the most common technique for the treatment of Type III displaced supracondylar humerus fractures in children. The purpose of this study was to evaluate whether the loss of reduction in lateral K wiring is non-inferior to crossed K wiring in this procedure. A prospective randomised non-inferiority trial was conducted. Patients aged three to seven presenting to the Emergency Department with a diagnosis of Type III supracondylar humerus fracture were eligible for inclusion in the study. Consenting patients were block randomised into one of two groups based on wire configuration (lateral or crossed K wires). Surgical technique and post-operative management were standardised between the two groups. The primary outcome was loss of reduction, measured by the change in Baumann's angle immediately post –operation compared to that at the time of K wire removal at three weeks. Secondary outcome data collected included Flynn's elbow score, the humero-capitellar angle, and evidence of iatrogenic ulnar nerve injury. Data was analysed using a t-test for independent means. A total of 52 patients were enrolled at baseline with 23 allocated to the lateral pinning group (44%) and 29 to the cross pinning group (56%). Six patients (5 crossed, 1 lateral) received a third wire and one patient (crossed) did not return for x-rays at pin removal and were therefore excluded from analysis. A total of 45 patients were subsequently analysed (22 lateral and 23 crossed). The mean change in Baumann's angle was 1.05 degrees, 95% CI [-0.29, 2.38] for the lateral group and 0.13 degrees, 95% CI [-1.30, 1.56] for the crossed group. There was no significant difference between the groups in change in Baumann's Angle at the time of pin removal (p = 0.18). Two patients in the crossed group developed post-operative iatrogenic ulnar nerve injuries, while none were reported in the lateral group. Preliminary analysis shows that loss of reduction in Baumann's angle with lateral K wires is not inferior to crossed K wires in the management of Type III supracondylar humerus fractures in children. The results of this study suggest that orthopaedic surgeons who currently use crossed K wires could consider switching to lateral K wires in order to reduce the risk of iatrogenic ulnar nerve injuries without significantly compromising reduction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 126 - 126
1 Jul 2020
Chen T Lee J Tchoukanov A Narayanan U Camp M
Full Access

Paediatric supracondylar fractures are the most common elbow fracture in children, and is associated with an 11% incidence of neurologic injury. The goal of this study is to investigate the natural history and outcome of motor nerve recovery following closed reduction and percutaneous pinning of this injury. A total of 246 children who underwent closed reduction and percutaneous pinning following supracondylar humerus fractures were prospectively enrolled over a two year period. Patient demographics (age, weight), Gartland fracture classification, and associated traumatic neurologic injury were collected and analyzed with descriptive statistics. Patients with neurologic palsies were separated based on nerve injury distribution, and followed long term to monitor for neurologic recovery at set time points for follow up. Of the 246 patient cohort, 46 patients (18.6%) sustained a motor nerve palsy (Group 1) and 200 patients (82.4%) did not (Group 2) following elbow injury. Forty three cases involved one nerve palsy, and three cases involved two nerve palsies. No differences were found between patient age (Group 1 – 6.6 years old, Group 2 – 6.2 years old, p = 0.11) or weight (Group 1 – 24.3kg, Group 2 – 24.5kg, p = 0.44). A significantly higher proportion of Gartland type III and IV injuries were found in those with nerve palsies (Group 1 – 93.5%, Group 2 – 59%, p < 0 .001). Thirty four Anterior Interosseous Nerve (AIN) palsies were observed, of which 22 (64.7%) made a full recovery by three month. Refractory AIN injuries requiring longer than three month recovered on average 6.8 months post injury. Ten Posterior Interosseous Nerve (PIN) palsies occurred, of which four (40%) made full recovery at three month. Refractory PIN injuries requiring longer than three month recovered on average 8.4 months post injury. Six ulnar nerve motor palsies occurred, of which zero (0%) made full recovery at three month. Ulnar nerve injuries recovered on average 5.8 months post injury. Neurologic injury occurs significantly higher in Gartland type III and IV paediatric supracondylar fractures. AIN palsies remain the most common, with an expected 65% chance of full recovery by three month. 40% of all PIN palsies are expected to fully recover by three month. Ulnar motor nerve palsies were slowest to recover at 0% by the three month mark, and had an average recovery time of approximately 5.8 months. Our study findings provide further evidence for setting clinical and parental expectations following neurologic injury in paediatric supracondylar elbow fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 125 - 125
1 Jul 2020
Chen T Camp M Tchoukanov A Narayanan U Lee J
Full Access

Technology within medicine has great potential to bring about more accessible, efficient, and a higher quality delivery of care. Paediatric supracondylar fractures are the most common elbow fracture in children and at our institution often have high rates of unnecessary long term clinical follow-up, leading to an inefficient use of healthcare and patient resources. This study aims to evaluate patient and clinical factors that significantly predict necessity for further clinical visits following closed reduction and percutaneous pinning. A total of 246 children who underwent closed reduction and percutaneous pinning following supracondylar humerus fractures were prospectively enrolled over a two year period. Patient demographics, perioperative course, goniometric measurements, functional outcome measures, clinical assessment and decision making for further follow up were assessed. Categorical and continuous variables were analyzed and screened for significance via bivariate regression. Significant covariates were used to develop a predictive model through multivariate logistical regression. A probability cut-off was determined on the Receiver Operator Characteristic (ROC) curve using the Youden index to maximize sensitivity and specificity. The regression model performance was then prospectively tested against 22 patients in a blind comparison to evaluate accuracy. 246 paediatrics patients were collected, with 29 cases requiring further follow up past the three month visit. Significant predictive factors for follow up were residual nerve palsy (p < 0 .001) and maximum active flexion angle of injured elbow (p < 0 .001). Insignificant factors included other goniometric measures, subjective evaluations, and functional outcomes scores. The probability of requiring further clinical follow up at the 3 month post-op point can be estimated with the equation: logit(follow-up) = 11.319 + 5.518(nerve palsy) − 0.108(maximum active flexion). Goodness of fit of the model was verified with Nagelkerke R2 = 0.574 and Hosmer & Lemeshow chi-square (p = 0.739). Area Under Curve of the ROC curve was C = 0.919 (SE = 0.035, 95% CI 0.850 – 0.988). Using Youden's Index, a cut-off for probability of follow up was set at 0.094 with the overall sensitivity and specificity maximized to 86.2% and 88% respectively. Using this model and cohort, 194 three month clinic visits would have been deemed medically unnecessary. Preliminary blind prospective testing against the 22 patient cohort demonstrates a model sensitivity and specificity at 100% and 75% respectively, correctly deeming 15 visits unnecessary. Virtual clinics and automated clinical decision making can improve healthcare inefficiencies, unclog clinic wait times, and ultimately enhance quality of care delivery. Our regression model is highly accurate in determining medical necessity for physician examination at the three month visit following supracondylar fracture closed reduction and percutaneous pinning. When applied correctly, there is potential for significant reductions in health care expenditures and in the economic burden on patient families by removing unnecessary visits. In light of positive patient and family receptiveness toward technology, our promising findings and predictive model may pave the way for remote health care delivery, virtual clinics, and automated clinical decision making


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 60 - 60
1 Mar 2012
Zenios M Ramachandran M Milne B Little D Smith N
Full Access

The aims of this study were (1) to assess whether rotational stability testing in Gartland III supracondylar fractures can be used intra-operatively in order to assess fracture stability following fixation with lateral-entry wires and (2) to quantify the incidence of rotational instability following lateral-entry wire fixation in Gartland type III supracondylar humeral fractures in children. Twenty-one consecutive patients admitted with Grade III supracondylar fractures at the Children's Hospital at Westmead were surgically treated according to a predetermined protocol. Following closed fracture reduction, 2 lateral-entry wires were inserted under radiographic control. Stability was then assessed by comparing lateral x-ray images in internal and external rotation. If the fracture was found to be rotationally unstable by the operating surgeon, a third lateral-entry wire was inserted and images repeated. A medial wire was used only if instability was demonstrated after the insertion of three lateral wires. Rotational stability was achieved with two lateral-entry wires in 6 cases, three lateral-entry wires in 10 cases and with an additional medial wire in 5 cases. Our results were compared to a control group of 24 patients treated at our hospital prior to introduction of this protocol. No patients returned to theatre following introduction of our protocol as opposed to 6 patients in the control group. On analysis of radiographs, the protocol resulted in significantly less fracture position loss as evidenced by change in Baumann's angle (p<0.05) and lateral rotational percentage (p<0.05). We conclude that the introduction of rotational stability testing allows intra-operative assessment of fracture fixation. Supracondylar fractures that are rotationally stable intra-operatively following wire fixation are unlikely to displace post-operatively. Only a small proportion (26%) of these fractures were rotationally stable with 2 lateral-entry wires. This may be a reflection of either the fracture configuration or inability to adequately engage the medial column