Abstract
The aims of this study were (1) to assess whether rotational stability testing in Gartland III supracondylar fractures can be used intra-operatively in order to assess fracture stability following fixation with lateral-entry wires and (2) to quantify the incidence of rotational instability following lateral-entry wire fixation in Gartland type III supracondylar humeral fractures in children.
Twenty-one consecutive patients admitted with Grade III supracondylar fractures at the Children's Hospital at Westmead were surgically treated according to a predetermined protocol. Following closed fracture reduction, 2 lateral-entry wires were inserted under radiographic control. Stability was then assessed by comparing lateral x-ray images in internal and external rotation. If the fracture was found to be rotationally unstable by the operating surgeon, a third lateral-entry wire was inserted and images repeated. A medial wire was used only if instability was demonstrated after the insertion of three lateral wires.
Rotational stability was achieved with two lateral-entry wires in 6 cases, three lateral-entry wires in 10 cases and with an additional medial wire in 5 cases. Our results were compared to a control group of 24 patients treated at our hospital prior to introduction of this protocol. No patients returned to theatre following introduction of our protocol as opposed to 6 patients in the control group. On analysis of radiographs, the protocol resulted in significantly less fracture position loss as evidenced by change in Baumann's angle (p<0.05) and lateral rotational percentage (p<0.05).
We conclude that the introduction of rotational stability testing allows intra-operative assessment of fracture fixation. Supracondylar fractures that are rotationally stable intra-operatively following wire fixation are unlikely to displace post-operatively. Only a small proportion (26%) of these fractures were rotationally stable with 2 lateral-entry wires. This may be a reflection of either the fracture configuration or inability to adequately engage the medial column.