Stem cells represent an exciting biological therapy for the management of many musculoskeletal tissues that suffer degenerative disease and/or where the reparative process results in non-functional tissue (‘failed healing’). The original hypothesis was that implanted cells would differentiate into the target tissue cell type and synthesise new matrix. However, this has been little evidence that this happens in live animals compared to the laboratory, and more recent theories have focussed on the immunomodulatory effects via the release of paracrine factors that can still improve the outcome, especially since inflammation is now considered one of the central processes that drive poor tendon healing. Because of the initial ‘soft’ regulatory environment for the use of stem cells in domestic mammals, bone and fat-derived stem cells quickly established themselves as a useful treatment for naturally occurring musculoskeletal diseases in the horse more than 20 years ago (Smith, Korda et al. 2003). Since the tendinopathy in the horse has many similarities to human tendinopathy, we propose that the following challenges and, the lessons learnt, in this journey are highly relevant to the development of
Objectives. Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion. The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li.
The use of mesenchymal stem cell (MSCs) for intervertebral disc (IVD) regeneration has been extensively explored in the last two decades. MSCs are potent cell types that can be easily and safely harvested due to their abundancy and availability. Moreover, they are characterized by the capacity to differentiate towards IVD cells as well as release growth factors to support resident cell metabolism and recruit local progenitor cells to induce endogenous repair of degenerated IVDs. This talk will outline the characteristics of the main MSC sources and their effect towards IVD regeneration based on available preclinical and clinical evidence. In addition, innovative aspects of MSC-derived cell-free therapies will also be discussed.
Osteoarthritis (OA) is a degenerative disease with a strong inflammatory component. Intra-articular (IA) injections of mesenchymal stem cells (MSCs) modulate local inflammation, although the lack of engraftment suggests that they undergo apoptosis. The aim of this study is to investigate the fate of IA-delivered MSCs in an animal model of OA and to assess the role of apoptosis
Objectives . Rotator cuff tears are among the most common and debilitating
upper extremity injuries. Chronic cuff tears result in atrophy and
an infiltration of fat into the muscle, a condition commonly referred
to as ‘fatty degeneration’. While
A significant number of fractures develop non-union.
Adipose derived mesenchymal stromal cells (ASC) are adult stem cells exhibiting functional properties that have open the way for cell-based clinical therapies. Primarily, their capacity of multilineage differentiation has been explored in a number of strategies for skeletal tissue regeneration. More recently, MSCs have been reported to exhibit immunosuppressive as well as healing capacities, to improve angiogenesis and prevent apoptosis or fibrosis through the secretion of paracrine mediators. Among the degenerative diseases associated with aging, osteoarthritis is the most common pathology and affects 16% of the female population over 65 years. Up to now, no therapeutic option exists to obtain a sustainable improvement of joint function beside knee arthroplasty. This prompted us to propose adipose derived stem cells as a possible cell therapy. We performed pre-clinical models of osteoarthritis and showed that a local injection of ASC showed a reduction of synovitis, reduction of osteophytes, joint stabilization, reducing the score of cartilage lesions. This work was completed by toxicology data showing the excellent tolerance of the local injection of ADSC and biodistribution showing the persistence of cells after 6 months in murine models. The aim of the ADIPOA trial is to demonstrate the efficacy of adipose derived
To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Bone marrow-derived, autologous MSCs were seeded on Objectives
Materials and Methods
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.