Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_4 | Pages 9 - 9
1 Mar 2020
Gannon M Downie S Aggarwal I Parcell B Davies P
Full Access

Gram staining is used as an initial indicator of synovial joint infection but has widely varied false negative rates in the literature. Clinical decisions are often made on the basis of gram stain results, such as whether a patient requires urgent surgery, and therefore it is important to understand the tests efficacy. A retrospective review of synovial fluid aspirates in NHS Tayside for the years 2017 and 2018 was performed from the departmental microbiology database. Aspirates of large joints were included (hip, knee, shoulder, wrist, elbow, ankle). Any joints with prosthesis were excluded, including fixation metalwork. Any abscess overlying a joint that was not proven to penetrate the joint was also excluded. Initial gram stain results and formal culture results were reviewed. Final culture results were considered to be the gold standard to compare gram stain results to. 2167 samples were reviewed. Of these 1552 were excluded base on inclusion criteria. Of the remaining 615, 120 (19.5%) were culture positive. There were 33 positive gram stain results, 1 false positive and 32 true positive results. The sensitivity was 26.67% with a specificity of 99.80% (p=0.0001). The negative predictive value is 84.88% (CI 83.44% – 86.21%). These results show that gram stain tests of native joints have a low sensitivity and poor negative predictive value. This is reflected in the current literature with prosthetic joints. Based on this study caution should be used when interpreting a negative gram stain result with appropriate safety netting and follow up required alongside clinical assessment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_6 | Pages 2 - 2
20 Mar 2023
Brennan C Slevin Z Savaridas T
Full Access

The suprascapular nerve is an ideal target for nerve blockade to alleviate shoulder pain given its widespread innervation to the shoulder girdle. Many techniques have been described. To widen the availability of this treatment we investigate whether an anatomical landmark technique can be easily learned by novice injectors to provide efficacious blockade. Five injectors were recruited with varying experience; from the novice medical student to an orthopaedic consultant. Five torsos (10 shoulders) were used. A single page of written instruction and illustration of the Dangoisse landmark technique was provided prior to injection of a Thiel embalmed cadaver bilaterally. A pre-mixed injectate with blue dye was used. Cadavers were dissected and the presence or absence of dye staining reported by 3 observers and a consensus agreement reached. Dissection demonstrated diffuse staining in the suprascapular fossa. 90% of shoulders were found to have adequate staining of the suprascapular nerve directly, or its distal branches, in a manner which would provide adequate anaesthesia. The inter-observer agreement was good (k = 0.73) for staining at the supraspinous fossa and excellent (k=0.87) for staining distally. The technique was easily performed by novice injectors with a 100% success rate. We demonstrate that this technique is reproducible by a range of clinicians to effectively provide anaesthesia of the SScN. The main risks are ineffective block (10% in this series) and of intravascular injection. Within a resource strained healthcare environment greater uptake of this technique is likely to be of benefit to a wider array of patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 82 - 82
1 Apr 2013
Dogaki Y Lee S Niikura T Koga T Okumachi E Waki T Kurosaka M
Full Access

Introduction. Parathyroid hormone 1–34 (PTH) has been reported to accelerate fracture healing. Previously, we demonstrated human fracture hematoma contained osteo-/chondro-progenitor cells. To date, there has been no study investigating the effect of PTH on fracture hematoma-derived cells (HCs) in vitro. Hypothesis. We hypothesized PTH treatment affected osteogenesis and chondrogenesis of HCs. Materials & Methods. HCs were divided into 3 groups: control (growth medium), PTH (−) (osteogenic or chondrogenic medium (OM or CM)), and PTH (+) group (OM or CM with PTH). Cell proliferation was assessed by MTS assay. Osteogenesis was assessed by alkaline phosphatase (ALP) activity, real-time PCR, and Alizarin red S staining. Chondrogenesis was assessed by real-time PCR and Safranin-O staining. Results. There was no significant difference in proliferation among 3 groups. ALP activity and expression levels of ALP and Runx2 in PTH (+) group were comparable with PTH (−) group. HCs in PTH (−) and PTH (+) group were strongly stained with Alizarin red S staining. The expression levels of collagen-II and -X in PTH (+) group were significantly lower than PTH (−) group. Pellets in PTH (+) group were slightly stained with Safranin-O staining. Discussion & Conclusion. Our results revealed that PTH treatment did not affect osteogenesis and inhibited chondrogenesis of HCs. PTH treatment after fracture may positively affect other cells such as periosteum-derived cells and circulating stem cells


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1269 - 1274
1 Sep 2013
Uppal HS Peterson BE Misfeldt ML Della Rocca GJ Volgas DA Murtha YM Stannard JP Choma TJ Crist BD

We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator (RIA) system retain substantial osteogenic potential and are at least equivalent to graft harvested from the iliac crest. Graft was harvested using the RIA in 25 patients (mean age 37.6 years (18 to 68)) and from the iliac crest in 21 patients (mean age 44.6 years (24 to 78)), after which ≥ 1 g of bony particulate graft material was processed from each. Initial cell viability was assessed using Trypan blue exclusion, and initial fluorescence-activated cell sorting (FACS) analysis for cell lineage was performed. After culturing the cells, repeat FACS analysis for cell lineage was performed and enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin red staining to determine osteogenic potential. Cells obtained via RIA or from the iliac crest were viable and matured into mesenchymal stem cells, as shown by staining for the specific mesenchymal antigens CD90 and CD105. For samples from both RIA and the iliac crest there was a statistically significant increase in bone production (both p < 0.001), as demonstrated by osteocalcin production after induction. . Medullary autograft cells harvested using RIA are viable and osteogenic. Cell viability and osteogenic potential were similar between bone grafts obtained from both the RIA system and the iliac crest. Cite this article: Bone Joint J 2013;95-B:1269–74


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_1 | Pages 5 - 5
1 Jan 2019
McLean M Akbar M McCall K Kitson S Crowe1 L Blyth M Smith I Rooney B Spencer S Leach W Campton L Gilchrist D McInnes I Millar N
Full Access

Tranexamic acid (TXA) is an anti-fibrinolytic medication commonly used to reduce peri-operative bleeding. Increasingly, topical administration as an intra-articular injection or peri-operative wash is being administered at concentrations between 10–100mg/ml. This study investigated effects of TXA on human periarticular tissues and primary cell cultures using clinically relevant concentrations. Tendon, synovium and cartilage obtained from routine orthopaedic surgeries were used ex vivo or cultured for in vitro studies using various concentrations of TXA. They were stained with 5-chloromethylfluorescein diacetate and propidium iodide and imaged using confocal microscopy to identify the proportion of live and dead cells. The in vitro effect of TXA on primary cultured tenocytes, synovial like fibroblast (FLS) cells and chondrocytes was investigated using cell viability assays (MTT), fluorescent microscopy and multi-protein apoptotic arrays for cell death. There was significant (p<0.01) increase in cell death in all tissue treated with 100mg/ml TXA, ex vivo. MTT assays revealed significant (p<0.05) decrease in cell viability following treatment with 50 or 100mg/ml of TXA within 4 hours of all cell types cultured in vitro. Additionally, there was significant (p<0.05) increase in cell apoptosis detected by fluorescent microscopy within 1 hour of exposure to TXA. Furthermore, multi-protein apoptotic arrays detected increased apoptotic proteins within 1 hour of TXA treatment in tenocytes and FLS cells. Our study provides evidence of TXA cytotoxicity to human peri-articular tissues ex vivo and in vitro at concentrations and durations of treatment routinely used in clinical environments. Clinicians should therefore show caution when considering use of topical TXA administration


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_14 | Pages 4 - 4
1 Oct 2014
Hindle P West C Biant L Péault B
Full Access

Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs). MSCs from the infra-patellar fat pad (IFP) have previously demonstrated increased chondrogenic potential. This study investigated the availability and potential of PSCs harvested from the infra-patellar fat pad of the human knee for musculoskeletal regeneration. Tissue sections of IFP were stained with markers for PSCs, MSCs and endothelial cells to confirm their presence and location. Samples were obtained from patients undergoing TKR (n=13) or ACL reconstructions (n=10). Pericytes and adventitial cells made up 3.8% and 21.2% respectively of the stromal vascular fraction. The total number of pericytes and adventitial cells were 4.6±2.2×104 and 16.2±3.2×104 respectively. Cells were cultured both separately and combined. Cell identity was ascertained using fluorescence-activated cell sorting, immunocytochemistry and PCR. Cultured PSCs were differentiated using chondrogneic, osteogenic, adipogenic and myogenic medias. Differentiation was determined using Alcian Blue, Alizarin red, Oil Red O and myosin staining. This study demonstrates that the IPFP is a viable source of PSCs that can be harvested either arthroscopically or through an arthrotomy by orthopaedic surgeons for cell-based musculoskeletal regeneration. Their potential now needs to be compared to conventional MSCs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_9 | Pages 8 - 8
1 May 2014
Hindle P West C Biant L Péault B
Full Access

Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs). MSCs from the infra-patellar fat pad (IFP) have previously demonstrated increased chondrogenic potential. This study investigated the availability and potential of PSCs harvested from the infra-patellar fat pad of the human knee for musculoskeletal regeneration. Sections of IFP were stained with markers for PSCs, MSCs and endothelial cells to confirm their presence and location. Samples were obtained from patients undergoing TKR (n=13) or ACL reconstructions (n=10). Pericytes and adventitial cells made up 3.8% and 21.2% respectively of the stromal vascular fraction. The total number of pericytes and adventitial cells were 4.6±2.2×10. 4. and 16.2±3.2×10. 4. respectively. Cells were cultured both separately and combined. Cell identity was ascertained using fluorescence-activated cell sorting and immunocytochemistry. Cultured PSCs were differentiated using chondrogneic, osteogenic, adipogenic and myogenic medias. Differentiation was determined using Alcian Blue, Alizarin red, Oil Red O and mysosin staining. This study demonstrates that the IFP is a viable source of PSCs that can be harvested either arthroscopically or through an arthrotomy by orthopaedic surgeons for cell-based musculoskeletal regeneration. Their potential now needs to be compared to conventional MSCs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_19 | Pages 1 - 1
1 Nov 2017
Mthethwa J Keen J
Full Access

Enterococcus faecalis is a rare but recognized cause of prosthetic joint infection. It is notorious for formation of biofilm on prosthetic surfaces. We hypothesized that a ‘serum factor’ was responsible for transformation of E. faecalis from its planktonic form to a biofilm existence upon making contact with prostheses. Using a novel ‘proteomic approach’, we studied the protein expression profiles of this bacterium when grown on an artificial surface in a serum environment against a control. E.faecalis 628 transconjugant formed by conjugation clinical strain (E55) and laboratory strain (JH2-2) was used to inoculate each of rabbit serum (RS) and Brain Heart Infusion (BHI) agar as a control and grown for 24 hours. Proteins were harvested for analysis in fractions including cell surface, membrane and cytosolic proteins. Recovered proteins were separated using 2-dimentional polyacrylamide gel electrophoresis (2D PAGE). Gels were stained and spots of interest harvested. These were analyzed using MALDI mass spectrometry followed by peptide mass fingerprinting using online database searches. Two surface exclusion proteins Sea1 and PrgA were only expressed from the serum culture. These proteins are both encoded by genes very close to the gene for enterococcal aggregation substance PrgB, which plays an integral role in biofilm formation. PrgA and PrgB are both encoded by the prgQ operon and hence expressed simultaneously upon activation of the operon. This tendency for serum only protein expression suggests the possibility of a pheromone-like activator in serum that could be a potential therapeutic target for management of biofilm associated E. faecalis prosthetic infections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_19 | Pages 13 - 13
1 Nov 2017
Riemen A Roelofs A Zupan J De Bari C
Full Access

Proliferation of synovial Mesenchymal Stromal/Stem Cells (MSCs) leads to synovial hyperplasia (SH) following Joint Surface Injury (JSI). Uncontrolled Yap activity causes tissue overgrowth due to modulation of MSC proliferation. We hypothesised that YAP plays a role in SH following JSI. A spatiotemporal analysis of Yap expression was performed using the JSI model in C57Bl/6 mice. Synovial samples from patients were similarly analysed. Gdf5-Cre;Yap1fl/fl;Tom mice were created to determine the effect YAP1 knockout in Gdf5 lineage cells on SH after JSI. In patients, Yap expression was upregulated in activated synovium, including a subset of CD55 positive fibroblast-like synoviocytes in the synovial lining (SL). Cells staining positive for the proliferation marker Ki67 expressed active YAP. In mice, Yap was highly expressed in injured knee joint synovium compared to controls. Yap mRNA levels at 2 (p<0.05) and 8 days (p<0.001) after injury were increased. Conditional Yap1 knockout in Gdf5 progeny cells prevented hyperplasia of synovial lining (SL) after JSI. Cellularity was significantly decreased in the SL but not in the sub-lining of injured Yap1 knockout- compared to control mice. The percentage of cells in synovium that were Tom+ increased in response to JSI in control and haplo-insufficient but not in YAP1 knockout mice (p<0.05). Modulation of YAP and proliferation of MSCs in the synovium after JSI provides a system to study the role of SH after trauma in re-establishing joint homeostasis and is a potential novel therapeutic target for the treatment of post traumatic OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_18 | Pages 2 - 2
1 Nov 2017
Young PS Greer AIM Tsimbouri MP Meek RMD Gadegaard N Dalby MJ
Full Access

Osteoporosis is a major healthcare burden, responsible for significant morbidity and mortality. Manipulating bone homeostasis would be invaluable in treating osteoporosis and optimising implant osseointegration. Strontium increases bone density through increased osteoblastogenesis, increased bone mineralisation, and reduced osteoclast activity. However, oral treatment may have significant side effects, precluding widespread use. We have recently shown that controlled disorder nanopatterned surfaces can control osteoblast differentiation and bone formation. We aimed to combine the osteogenic synergy of nanopatterning with local strontium delivery to avoid systemic side effects. Using a sol-gel technique we developed strontium doped and/or nanopatterned titanium surfaces, with flat titanium controls including osteogenic and strontium doped media controls. These were characterised using atomic force microscopy and ICP-mass spectroscopy. Cellular response assessed using human osteoblast/osteoclast co-cultures including scanning electron microscopy, quantitative immunofluorescence, histochemical staining, ELISA and PCR techniques. We further performed RNAseq gene pathway combined with metabolomic pathway analysis to build gene/metabolite networks. The surfaces eluted 800ng/cm2 strontium over 35 days with good surface fidelity. Osteoblast differentiation and bone formation increased significantly compared to controls and equivalently to oral treatment, suggesting improved osseointegration. Osteoclast pre-cursor survival and differentiation reduced via increased production of osteoprotegrin. We further delineated the complex cellular signalling and metabolic pathways involved including unique targets involved in osteoporosis. We have developed unique nanopatterned strontium eluting surfaces that significantly increase bone formation and reduce osteoclastogenesis. This synergistic combination of topography and chemistry has great potential merit in fusion surgery and arthroplasty, as well as providing potential targets to treat osteoporosis


Bone & Joint Research
Vol. 2, Issue 6 | Pages 112 - 115
1 Jun 2013
Ismail HD Phedy P Kholinne E Kusnadi Y Sandhow L Merlina M

Objectives. Nonunion is one of the most troublesome complications to treat in orthopaedics. Former authors believed that atrophic nonunion occurred as a result of lack of mesenchymal stem cells (MSCs). We evaluated the number and viability of MSCs in site of atrophic nonunion compared with those in iliac crest. Methods. We enrolled five patients with neglected atrophic nonunions of long bones confirmed by clinical examinations and plain radiographs into this study. As much as 10 ml bone marrow aspirate was obtained from both the nonunion site and the iliac crest and cultured for three weeks. Cell numbers were counted using a haemocytometer and vitality of the cells was determined by trypan blue staining. The cells were confirmed as MSCs by evaluating their expression marker (CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and viability were compared between the nonunion and iliac creat sites. Results. After three weeks, numbers of 6.08×10. 6. cells (. sd. 2.07) and 4.98×10. 6. cells (. sd. 1.15) were obtained from the nonunion site and the iliac crest, respectively, with viability of 87.1% (81.7% to 90.8%) and 89.8% (84.7% to 94.5%), respectively. No differences was found between the two sources of MSCs regarding cells number (p = 0.347) and viability (p = 0.175). Conclusions. Our findings showed the existence of MSCs in the site of atrophic nonunion, at a similar number and viability to those isolated from the iliac crest


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_4 | Pages 1 - 1
1 May 2015
Davidson E White T Hall A
Full Access

Articular cartilage has very poor repair potential, however it has an extraordinary capacity to withstand physiological mechanical loads in an intact joint. The nature and extent of chondrocyte death in articular cartilage following many forms of injury (trephine, scalpel, osteotome, sutures and drilling) has been characterised, but the ability to bear mechanical injury from iatrogenic surgical interventions is still unknown. A standard arthroscopic probe was moved at varying physiological pressures along the articular cartilage of joint before staining with fluorescent dyes to allow live/dead cell imaging using laser confocal scanning microscopy and imaging software, Image J. Bovine metatarsal phalangeal joints and fresh human cadaveric femoral condyles were used. The probe caused statistically significant chondrocyte death in bovine cartilage (p=0.02). Mild pressure 5% cell death, moderate (standard arthroscopic technique pressure) 22% and severe pressure 38%. A similar result was seen in human tissue with 24% cell death at moderate pressure compared to a control (p=0.0699). The widely assumed benign arthroscopic probe produces significant cell death in articular cartilage when used at standard operating pressures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_33 | Pages 3 - 3
1 Sep 2013
Maclaine S Bennett A Gadegaard N Meek R Dalby M
Full Access

Nanoscale topography increases the bioactivity of a material and stimulates specific responses (third generation biomaterial properties) at the molecular level upon first generation (bioinert) or second generation (bioresorbable or bioactive) biomaterials. We developed a technique (based upon the effects of nanoscale topography) that facilitated the in vitro expansion of bone graft for subsequent implantation and investigated the optimal conditions for growing new mineralised bone in vitro. Two topographies (nanopits and nanoislands) were embossed into the bioresorbable polymer Polycaprolactone (PCL). Three dimensional cell culture was performed using double-sided embossing of substrates, seeding of both sides, and vertical positioning of substrates. The effect of Hydroxyapatite, and chemical stimulation were also examined. Human bone marrow was harvested from hip arthroplasty patients, the mesenchymal stem cells culture expanded and used for cellular analysis of substrate bioactivity. The cell line specificity and osteogenic behaviour was demonstrated through immunohistochemistry, confirmed by real-time PCR and quantitative PCR. Mineralisation was demonstrated using alizarin red staining. Results showed that the osteoinduction was optimally conferred by the presence of nanotopography, and also by the incorporation of hydroxyapatite (HA) into the PCL. The nanopit topography and HA were both superior to the use of BMP2 in the production of mineralised bone tissue. The protocol from shim production to bone marrow harvesting and vertical cell culture on nanoembossed HaPCL has been shown to be reproducible and potentially applicable to economical larger scale production


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 91 - 91
1 Apr 2013
Okumachi E Lee SY Niikura T Koga T Dogaki Y Waki T Kurosaka M
Full Access

Introduction. Recently, some case reports have been published, in which nonunions were successfully healed with parathyroid hormone 1–34 (PTH) administration. Previously, we demonstrated that the intervening tissue at the nonunion site contains multilineage mesenchymal progenitor cells and plays an important role during the healing process of nonunion. We investigated the effect of PTH on osteogenic differentiation of human nonunion tissue-derived cells (NCs) in vitro. Hypothesis. We hypothesized that PTH directly promoted osteogenic differentiation of NCs. Materials & Methods. NCs were isolated from 4 patients, and cultured. The cells were divided into two groups: (1) PTH (−) group: cells cultured in osteogenic medium (OM), (2) PTH (+) group: cells cultured in OM with PTH. Osteogenic differentiation potential was analyzed. Results. Real-time PCR analysis showed that gene expression levels of Runx2, ALP, OC and PTHR1 in PTH (+) group were lower than PTH (−) group at day 14. In both groups, there was no significant difference in ALP activity at days 8 and 14, and in the intensity of Alizarin red S staining at day 20. Discussion. Treatment of PTH did not lead to increase osteogenic differentiation of NCs. Nonunion healing by PTH administration may be caused by other mechanisms such as mobilization and recruitment of osteoprogenitor cells


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 68 - 68
1 Apr 2013
Wehner T Gruchenberg K Bindl R Ignatius A Claes L
Full Access

Introduction. The fracture healing outcome is often evaluated via ex vivo testing of the fracture callus. However, there is only a small time window, where the callus stiffness is significantly different, i.e. a delayed fracture healing might be undetected if the time point of sacrifice is improper. The aim of this study was to develop an in vivo monitoring concept, which allows determining the fracture callus stiffness in vivo over the whole healing time in rats. Hypothesis. The fracture callus stiffness can be monitored by measuring the deformation of the external fixation device during gait analysis at several healing time points. Materials & Methods. The right femurs of sixteen wistar rats were osteotomized and stabilized with an external fixation device (stiffness 119 N/mm or 32 N/mm). The fixator body was instrumented with a stain gauge to measure the deformation. Gait analysis was performed once per week in a gait wheel equipped with a ground reaction force measuring device. Results. The deformation of the fixation devices decreased over the healing time indicating an increase of the callus stiffness. The flexible fixated group showed a later increase of the callus stiffness indicating a delay in fracture healing. Discussion & Conclusion. Measuring the deformation of the fixator and gait analysis provides a powerful tool to monitor the fracture healing process in rats. With this, it is possible to detect a delayed fracture healing process more reliable than with ex vivo analyses


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 80 - 80
1 Apr 2013
Dogaki Y Lee S Niikura T Koga T Okumachi E Waki T Kakutani K Nishida K Kurosaka M
Full Access

Introduction. iPSCs represent a promising cell source for bone regeneration. To generate osteoprogenitor cells, most protocols use the generation of embryoid bodies (EBs). However, these protocols give rise to heterogeneous population of different cell lineage. Hypothesis. We hypothesized that a direct plating method without EB formation step could be an efficient protocol for generating a homogeneous population of osteoprogenitor cells from iPSCs. Materials & Methods. Murine iPSC colonies were dissociated with trypsin-EDTA, and obtained single cells were cultured on gelatin-coated plates in MSC medium and FGF-2. Adherent cells obtained by this direct-plating technique were termed as direct-plated cells (DPCs). DPCs were evaluated for cell-surface protein expression using flow cytometry. Expression levels of Oct-3/4 mRNA in iPSCs and DPCs were analyzed by real-time PCR. DPCs were cultured for 14 days in osteogenic medium. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity, real-time PCR, and alizarin red S staining. Results. Expression level of Oct-3/4 in DPCs was robustly down-regulated compared to that in iPSCs. Flow cytometry analysis revealed DPCs had similar characteristics to MSC, suggesting DPCs lost pluripotency. Moreover, the DPCs exhibited high osteogenic potential. Discussion & Conclusion. Our novel direct plating method in the absence of EB formation step could be amenable to large-scale production of osteoprogenitor cells for bone regeneration


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIII | Pages 11 - 11
1 Jul 2012
Smith I Cyrulik K Amyes S Simpson A Hall A
Full Access

In some centres, serial bedside aspirations, in association with intravenous antibiotics, are still an accepted treatment for septic arthritis (Mathews, Postgraduate Medical Journal, 2008). However, there is a risk that bacterial products remain in the joint, even when the bacteria have been destroyed. We have conducted a study to ascertain whether bacterial products alone have an effect on in situ chondrocyte viability. A hip aspirate (25μl), containing Staphylococcus aureus, from a patient with septic arthritis was added to 5ml culture medium and incubated (37°C) for 48hrs. The solution was then centrifuged (3400g for 10mins) and the supernatant removed. Cartilage explants were harvested from a bovine metacarpophalangeal joint, placed into the bacterial supernatant and incubated at 37°C. Explants were removed at hourly intervals over a 6-hour period and stained with the fluorescent probes chloromethylfluorescein di-acetate (10μM) and propidium iodide (10μM) to label living chondrocytes green and dead cells red respectively. Following imaging of cartilage by confocal microscopy, the percentage cell death at each time point was obtained using Volocity 4 software. Chondrocyte death increased markedly with time: 0.04% at 2hrs, 28% at 4hrs and 39% at 6hrs. This study shows that bacterial products rapidly penetrate the cartilage matrix and have a damaging effect on in situ chondrocyte viability. Further work will clarify the contributions made by the various toxic components in the culture supernatant, but these data support the need to remove the bacteria and their products aggressively as part of the treatment of septic arthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_10 | Pages 17 - 17
1 Feb 2013
Smith I Milto K Doherty C Amyes S Simpson A Hall A
Full Access

Staphylococcus aureus is a highly virulent pathogen and is implicated in approximately 50% of cases of septic arthritis. Studies investigating other S. aureus-related infections have suggested that alpha (Hla), beta (Hlb) and gamma (Hlg) toxins are key virulence factors. In particular, the ‘pore-forming’ alpha toxin is believed to be most potent. In this study, we have assessed the influence of alpha toxin on in situ chondrocyte viability. Osteochondral explants were harvested from the metacarpophalangeal joints of 3-year-old cows and placed into flasks containing Dulbecco's Modified Eagle's Medium. The flasks were then inoculated with the following isogenic ‘knockout’ strains of S. aureus: DU5946 (Hla+Hlb-Hlg-) or DU1090 (Hla-Hlb+Hlg+). The explants were incubated (37°C) and stained after 18, 24 and 40hrs with chloromethylfluorescein di-acetate and propidium iodide, labelling living chondrocytes green and dead cells red, respectively. Axial sections were imaged by confocal microscopy and the percentage cell death obtained using Volocity 4 software. The alpha toxin-producing S. aureus caused rapid cell death, with 24.8+/−3.7% at 18hrs and 44.6+/−7.2% at 24hrs. At 40hrs, there was significantly more chondrocyte death (87.4+/−3.6%; p<0.001) compared to the alpha toxin knockout strain (4.1+/−1.7%; means +/− SEM; n=4). In situ chondrocyte viability was significantly compromised by alpha toxin, with beta and gamma toxins having minimal effect. Further work will clarify the exact mechanism through which this important toxin induces chondrocyte death. Thereafter, it is hoped that targeted treatments can be developed to reduce the extent of cartilage destruction during, and after, an episode of septic arthritis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 462 - 462
1 Sep 2012
Lakemeier S Reichelt J Foelsch C Fuchs-Winkelmann S Schofer M Paletta J
Full Access

Introduction. Differing levels of tendon retraction are found in full-thickness rotator cuff tears. The pathophysiology of tendon degeneration and retraction is unclear. Neoangiogenesis in tendon parenchyma indicates degeneration. Hypoxia inducible factor 1(HIF) and vascular endothelial growth factor (VEGF) are important inducers of neoangiogenesis. Rotator cuff tendons rupture leads to fatty muscle infiltration (FI) and muscle atrophy (MA). The aim of this study is to clarify the relationship between HIF and VEGF expression, neoangiogenesis, FI, and MA in tendon retraction found in full-thickness rotator cuff tears. Methods. Rotator cuff tendon samples of 33 patients with full-thickness medium-sized rotator cuff tears were harvested during reconstructive surgery. The samples were dehydrated and paraffin embedded. For immunohistological determination of VEGF and HIF expression, sample slices were strained with VEGF and HIF antibody dilution. Vessel density and vessel size were determined after Masson-Goldner staining of sample slices. The extent of tendon retraction was determined intraoperatively according to Patte's classification. Patients were assigned to 4 categories based upon Patte tendon retraction grade, including one control group. FI and MA were measured on standardized preoperative shoulder MRI. Results. HIF and VEGF expression, FI, and MA were significantly higher in torn cuff samples compared with healthy tissue (p<0.05). HIF and VEGF expression, and vessel density significantly increased with extent of tendon retraction (p<0.04). A correlation between HIF/VEGF expression and FI and MA could be found (p<0.04). There was no significant correlation between HIF/VEGF expression and neovascularity (p>0.05). Conclusion. Tendon retraction in full-thickness medium-sized rotator cuff tears is characterized by neovascularity, increased VEGF/HIF expression, FI, and MA. VEGF expression and neovascularity may be effective monitoring tools to assess tendon degeneration