Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 65 - 65
1 Jul 2020
Sahak H Hardisty M Finkelstein J Whyne C
Full Access

Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for medical image visualization and processing. The procedural steps include multimodal patient-specific loading and fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data, bone threshold-based segmentation, soft tissue segmentation, surgical planning, and a laminectomy and spinal decompression simulation. Fusion of CT and MRI elements was achieved using Fiducial-Based Registration which aligned the scans based on manually placed points allowing for the identification of the relative position of soft and hard tissues. Soft tissue segmentation of the spinal cord, the cerebrospinal fluid, the cauda equina, and the ligamentum flavum was performed using Simple Region Growing Segmentation (with manual adjustment allowed) involving the selection of structures on T1 and/or T2-weighted scans. A high-fidelity 3D model of the bony and soft tissue anatomy was generated with the resulting surgical exposure defined by labeled vertebrae simulating the central surgical incision. Bone and soft tissue resecting tools were developed by customizing manual 3D segmentation tools. Simulating a laminectomy was enabled through bone and ligamentum flavum resection at the site of compression. Elimination of the stenosis enabled decompression of the neural elements simulated by interpolation of the undeformed anatomy above and below the site of compression using Fill Between Slices to reestablish pre-compression neural tissue anatomy. The completed workflow allows patient specific simulation of decompression procedures by staff surgeons, fellows and residents. Qualitatively, good visualization was achieved of merged soft tissue and bony anatomy. Procedural accuracy, the design of resecting tools, and modeling of the impact of bone and ligament removal was found to adequately encompass important challenges in decompression surgery. This software development project has resulted in a well-characterized freely accessible tool for simulating spinal decompression surgery. Future work will integrate and evaluate the simulator within existing orthopaedic resident competency-based curriculum and fellowship training instruction. Best practices for effectively teaching decompression in tight areas of spinal stenosis using virtual simulation will also be investigated in future work


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 16 - 16
7 Nov 2023
Khumalo M
Full Access

Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on facets joints. All these can lead to degenerative changes and osteophytes that can narrow the spinal canal. Surgery is indicated in patients with spinal stenosis who have intractable pain, altered quality of life, substantially diminished functional capacity, failed non-surgical treatment and are not candidates for non-surgical treatment. The aim was to determine the reasons for refusal of surgery in patients with established degenerative lumber spine pathology eligible for surgery. All patients meeting the study criteria, patients older than 18 years, patients with both clinical and radiological established symptomatic degenerative lumbar spine pathology and patients eligible for surgery but refusing it were recruited. Questionnaire used to investigate reasons why they are refusing surgery. Results 59 were recruited, fifty-one (86.4 %) females and eight (13.6 %) males. Twenty (33.8 %) were between the age of 51 and 60 years, followed by nineteen (32.2 %) between 61 and 70 years, and fourteen (23.7 %) between 71 and 80 years. 43 (72 %) patients had lumber spondylosis complicated by lumber spine stenosis, followed by nine (15.2 %) with lumbar spine spondylolisthesis and four (6.7 %) had adjacent level disease. 28 (47.4 %) were scared of surgery, fifteen (25.4 %) claimed that they are too old for surgery and nine (15.2 %) were not ready. Findings from this study outlined that patients lack information about the spinal surgery. Patients education about spine surgery is needed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 49 - 49
1 Mar 2012
Ghosh S Sayana M Ahmed E Jones CW
Full Access

Introduction. We propose that Total Hip Replacement with correction of fixed flexion deformity of the hip and exaggerated lumbar lordosis will result in relief of symptoms from spinal stenosis, possibly avoiding a spinal surgery. A sequence of patients with this dual pathology has been assessed to examine this and suggest a possible management algorithm. Materials and methods. A retrospective study of 19 patients who presented with dual pathology was performed and the patients were assessed with regards to pre and post-operative symptoms, walking distance, and neurological status. Results. There were 17 patients with improvement in the spinal stenotic symptoms following hip replacement to an extent that none required spinal surgery. There were two patients who had spinal surgery after THR, at varying lengths following hip replacements as their spinal stenotic symptoms worsened over time, and had lateral spinal stenosis on MRI. Discussion. In advanced hip osteoarthritis, a fixed flexion deformity may develop at the hip leading to an exaggerated lumbar lordosis in erect posture. In the presence of co-existing spinal stenosis, the exaggerated lumbar lordosis may worsen the spinal stenotic symptoms while standing and walking. Cadaveric & Radiological studies have shown that canal narrowing occurs with increased lordosis/ extension in the lumbar spine. Our findings suggest that when central lumbar spinal stenosis coexists with bilateral hip arthritis and FFD at the hip, THR should be offered first. Successful hip surgery for arthritis correcting significant fixed flexion deformity would lessen the lumbar lordosis, thus correcting the excessive pathological narrowing. If a patient is fit enough, simultaneous bilateral THR via an anterior type of approach makes surgical correction of FFD easier. Although it has been suggested in the literature that patients with spinal stenosis have a increased risk of neurological impairment following THR, we did not find any clear association


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 144 - 144
1 May 2012
T. R R. M J. M C. A
Full Access

Introduction. In degenerative lumbar spine, it seems possible that foraminal stenosis is over-diagnosed as axial scanning is not performed in the plane of the exiting nerve root. We carried out a two-part study to determine the true incidence of foraminal stenosis. Patients and Methods. Initially we performed a retrospective analysis of radiology reports of conventional Magnetic Resonance Imaging in 100 cases of definite spinal stenosis to determine the incidence of reported ‘foraminal stenosis’. Subsiquently we performed a prospective study of MRI including fine slice T2 and T2 STIR coronal sequences in 100 patients with suspected stenosis. Three surgeons and one radiologist independently compared the diagnoses on conventional axial and sagittal sequences with the coronal scans. Results. The retrospective analysis found that ‘foraminal stenosis’ was reported by radiologists in 46% using conventional axial and sagittal sequences. In the prospective study of 100 patients suspected of having stenosis, spinal stenosis was reported in 40; degenerative spondylolisthesis in 14; posterolateral disc herniation in 14; normal report in 13; far lateral disc herniation in 7; isthmic (lytic) spondylolisthesis in 6; and degenerative scoliosis in 6. Conventional sequences diagnosed lateral recess stenosis reliably, but also suggested foraminal stenosis in 43%. However, coronal sequences clearly showed no foraminal nerve compression at all. In degenerative spondylolisthesis conventional scans suggested foraminal stenosis in 10 of 14 cases. Coronal imaging again showed no foraminal stenosis. Excellent correlation was found in normal spines and in disc herniation. Foraminal nerve compression was confirmed by conventional and coronal imaging only in isthmic spondylolisthesis, degenerative scoliosis and far lateral disc herniation. Conclusion. The addition of coronal MRI proves that foraminal stenosis is over-diagnosed. True foraminal stenosis definitely exists in isthmic spondylolisthesis, degenerative scoliosis and far lateral disc herniation, but we question its existence in spinal stenosis and degenerative spondylolisthesis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 38 - 38
1 Dec 2016
Su E
Full Access

Nerve palsy occurring after elective primary total hip arthroplasty (THA) is a devastating complication because of its effect on motor strength, walking ability, potential for pain, and unexpected nature. In general, the nerve distribution involved is the peroneal branch of the sciatic nerve, and the level of involvement is usually mixed motor and sensory. Prior publications have associated limb lengthening, dysplasia and use of the posterior approach to be associated with a higher incidence of nerve palsy. In the literature, the incidence of sciatic nerve palsy is estimated to be 0.2 to 1.9%. We examined the rate of sciatic nerve palsy after THA performed by the joint replacement service at Hospital for Special Surgery between the years 1998–2013. Each case was matched with 2 controls that underwent THA and did not develop postoperative neuropathy. Controls were matched by surgical date having been within 7 days of their matched case's surgery date. Patient and surgical variables were reviewed using data from patient charts and the institution's total joint replacement registry. A multivariable logistic regression model was created to identify potential risk factors for neuropathy following THA while adjusting for potential confounders. We found that, of 39,056 primary THA cases, there were 81 cases of sciatic nerve palsy, giving an incidence of 0.21%. The factors with the greatest odds ratios for nerve palsy were: history of smoking (OR=3.45); history of spinal stenosis (OR=4.45), and time of day of 1PM or later (OR=3.98). We did not find limb lengthening, dysplasia, or type of fixation to be associated with nerve palsy. In conclusion, post-surgical neuropathy has a low incidence after primary THA, but at our institution, was associated with several factors. Spine-related comorbidities, such as spinal stenosis and lumbar spine disease, and smoking history should be closely monitored to inform the patient and surgeon for the potential increased risk of postoperative neuropathy following THA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 87 - 87
1 Nov 2015
Su E
Full Access

Nerve palsy occurring after elective primary total hip arthroplasty is a devastating complication because of its effect on motor strength, walking ability, potential for pain, and unexpected nature. In general, the nerve distribution involved is the peroneal branch of the sciatic nerve, and the level of involvement is usually mixed motor and sensory. Prior publications have associated limb lengthening, dysplasia and use of the posterior approach to be associated with a higher incidence of nerve palsy. In the literature, the incidence of sciatic nerve palsy is estimated to be 0.2–1.9%. We examined the rate of sciatic nerve palsy after THA performed by the joint replacement service at Hospital for Special Surgery between the years 1998 and 2013. Each case was matched with 2 controls that underwent THA and did not develop post-operative neuropathy. Controls were matched by surgical date having been within 7 days of their matched case's surgery date. Patient and surgical variables were reviewed using data from patient charts and the institution's total joint replacement registry. A multivariable logistic regression model was created to identify potential risk factors for neuropathy following THA while adjusting for potential confounders. We found that, of 39,056 primary THA cases, there were 81 cases of sciatic nerve palsy, giving an incidence of 0.21%. The factors with the greatest odds ratios for nerve palsy were: history of smoking (OR=3.45); history of spinal stenosis (OR=4.45), and time of day of 1PM or later (OR=3.98). We did not find limb lengthening, dysplasia, or type of fixation to be associated with nerve palsy. In conclusion, post-surgical neuropathy has a low incidence after primary THA, but at our institution, was associated with several factors. Spine-related comorbidities, such as spinal stenosis and lumbar spine disease, and smoking history should be closely monitored to inform the patient and surgeon for the potential increased risk of post-operative neuropathy following THA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 47 - 47
1 May 2012
McDonald K O'Donnell M Verzin E Nolan P
Full Access

Objectives. Neurogenic intermittent claudication secondary to lumbar spinal stenosis is a posture dependant complaint typically affecting patients aged 50 years or older. Various treatment options exist for the management of this potentially debilitating condition. Non-surgical treatments: activity modification, exercise, NSAIDs, epidural injections. Surgical treatment options include decompression surgery and interspinous process device surgery. Interspinous process decompression is a relatively new, minimally invasive, stand-alone alternative to conservative and standard surgical decompressive treatments. The aim of this review is to evaluate the use of the X-Stop interspinous implant in all patients with spinal stenosis who were managed using the device in Northern Ireland up to June 2009. Method. We performed a retrospective review of all patients who had the X-Stop device inserted for spinal stenosis by all consultant spinal surgeons in Northern Ireland. Patient demographics, clinical symptomatology, investigative modality, post-operative quality of life, cost effectiveness, complications and long-term outcomes were assessed. Information was collected from patients using a questionnaire which was posted to them, containing the SF-36 generic questionnaire and some additional questions. Results. A total of 23 patients underwent X-stop insertion in Northern Ireland at the time of this review, 19 patients returned their questionnaires and of these 17 were completed in full and therefore included. The mean age of the study population was 60.1 years and all patients included in the study had symptoms of neurogenic claudication secondary to lumbar spinal stenosis confirmed on MRI scan. The average hospital stay was 1.5 days compared to 7.5 days for decompressive laminectomy patients. Also, at a mean follow-up of 17.8 months, 2 patients suffered direct complications of device insertion requiring removal of the implant both of these patients agreed that they would undergo the operation again in the future. SF-36 scores indicate a quality of life improvement which equates to that of other popular orthopaedic operations such as total hip and total knee replacement. X-stop insertion has been shown to be much more cost-effective than decompressive laminectomy in previous studies. Conclusion. Decompression of the lumbar spine with the X-stop interspinous implant device is safe, cost-effective, minimally invasive, and at least as effective at improving symptomatology from lumbar spinal stenosis. It is obviously more invasive than non-surgical techniques, but is less invasive than lumbar decompression procedures, is less destructive to surrounding tissues and if it fails to produce the desired results can be removed easily and the option remains for the patient to under decompression


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 62 - 62
1 Nov 2015
Schroer W
Full Access

Introduction. Functional deficits persist in a significant percentage of total hip arthroplasties (THA), leading to patient dissatisfaction. Spinal stenosis is a leading cause of chronic disability and lower extremity weakness. Although previous studies have evaluated the potential benefit of THA on back pain, none have reported the effects of spine disability on functional outcomes and patient satisfaction with THA. Methods. 244 primary THAs (233 patients) with minimum 2-year follow-up rated their satisfaction, return to activity, and standard hip outcomes using the Oxford Hip Score (OHS). History of lumbar spine pain, lumbar surgery, and daily activity limitations was documented and an Oswestry Disability Index (ODI) score was calculated. Results. 151 of 244 (62%) patients reported a history of back problems: 35 patients (14%) – history of lumbar surgery, 91 (37%) – daily low back pain, and 97 (40%) – back pain that limited activity. Patients with a history of back problems had lower OHS scores than those without, p=0.0001. Pain relief was reported by 93% versus resumption of activities in 82% of THA patients, p=0.025. Increasing spine disability, as determined by ODI, correlated with poor OHS, p<0.0001. Spine disability (ODI) was directly associated with patient dissatisfaction for pain relief (R=0.41, p<0.0001), return to activity (R=0.34, p<0.0001), and overall surgical results (ODI, R=0.38, p<0.0001) at 2 years after THA. Patient age, gender, and BMI were not associated with poor THA outcomes. Conclusions. The majority of THA patients have a history of lumbar spine problems. The Oswestry Spine Disability Index, which is the primary outcome measure of spinal disorders, correlated strongly with poor THA outcomes. Moderate and severe lumbar spine disability directly correlated with worse Oxford Hip Scores. Spine disability was directly associated with THA dissatisfaction


Purpose of study. This RCT is to determine whether or not there is a clinical benefit from inserting a dynamic stabilising implant such as the Wallis ligament on the functional recovery of patients who have undergone lumbar decompression surgery. This Interspinous implant was developed as an anatomically conserving procedure without recourse to lumbar spinal fusion surgery. The biomechanical studies have shown that unloading the disc and facet joints reduces intradiscal pressures at same and adjacent levels. The aim of this study was to identify a patential Wallis affect. Methods. Ethicallly approved. Patients were randomized into 2 groups, decompression alone or decompression with wallis interspinous ligament stabilisation. Patients were assessed pre operatively and post operatively every 6 months by VAS pain score and Oswestry Disability Index. Summary of findings. A total of 60 patients were recriuted the study from October 2005. Equal number had been randomized into two groups. The mean age of 54 (24–85) and the average follow is 36 months (6–48). The results were significantly better in decompression plus Wallis group compared to decompression alone, showing a minimal clinical difference compared to the control group. Relationship between findings and existing knowledge: Our results deomonstrate that clincial outcomes are significantly better when a Wallis implant was used in lumbar deompression. Patients experienced less back pain. Overall significance of findings: The Wallis implant represents a successful non fusion stabilisation device in the treatment of degenerative lumbar spine disease with canal stenosis. Minimal soft tissue dissection, quick rehabilitation, low morbidity. The Wallis ligament sucessfully treats spinal stenosis by reducing pain score, preserving mobility, and function


Background. Foraminal stenosis is often encountered in patients undergoing decompression for spinal stenosis. Given the increased resection of facets and the presence of the more sensitive dorsal root ganglion, it is hypothesized that patients with foraminal stenosis have poorer postoperative outcomes. Methods. Thirty-one patients undergoing decompression without fusion for lumbar spinal stenosis were evaluated. The degree of foraminal stenosis was determined by 2 independent reviewers for absence of fat around the nerve roots. ImageJ digital imaging software was also used to evaluate the foraminal area. Patients with foraminal stenosis were compared with those without using the Oswestry Disability Index (ODI) and a numerical pain scale for back and leg pain at a minimum of 1 year follow-up. Results. Twenty patients in the foraminal stenosis group were compared with 11 without foraminal stenosis. There were no significant differences between the 2 groups regarding age, sex, comorbidities, number of levels operated on, preoperative ODI, back pain or leg pain scores. The foraminal area was significantly smaller in the foraminal stenosis group. Patients without foraminal stenosis reported significant improvements in ODI (mean 26.0), back pain (mean 3.1) and leg pain scores (mean 5.5). Patients with foraminal stenosis reported significant improvements in ODI (mean 18.8) and leg pain (mean 2.5) but not in back pain (mean 0.3). Comparing the 2 groups, the patients with foraminal stenosis had significantly less improvement in back pain (p = 0.02) and leg pain (p = 0.02). Conclusion. The results of this study suggest that presence of foraminal stenosis is a negative predictor for successful outcome following decompression surgery. This may be related to the increased instability that occurs when a foraminotomy is required. Spinal fusion may reduce this effect, and further study is required. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 43 - 43
1 Aug 2013
de Meulenaere P
Full Access

Purpose:. The purpose of the study was to evaluate the safety and efficacy of fixation of the lumbar spine, without fusion, using the Cosmic Pedicle Fixation System. Method:. Prospective study of 107 patients selected to have either a completely non fused fixation (40 patients), and 67 who underwent a hybrid fusion. During the same period 299 standard fusions were performed at same institution. Enrolment was from January 2006 to August 2008. Appropriate consent was obtained, but the choice of which levels to fuse and which levels to fix only was the surgeon's choice. Pre-operative ODI and VAS scores were obtained as well as parameters of sitting, standing and walking potential. Regular follow-up visits were done, and these parameters were controlled together with regular x-rays at each visit at 6 weeks, 6 months and 12 months and annually thereafter. Intra-operative blood loss, hospital stay and any adverse reaction or complications were documented. Results:. The average follow up was more than 3 years. Average age at surgery was 62 years. Most were treated for spinal stenosis (79/107). Average VAS score improved from 8 to 2.2. ODI score improved from 50 to 14 (at 12 months), but there was a slight deterioration with time and aging. All improved dramatically on walking distances and sitting time. Revision surgery was required in 10 patients, of which only 5 had fusions performed at the previously non fused segment. Screw breakage occurred in a number of patients but was not correlated to poor outcomes. Average blood loss was 336 ml while hospital stay was only 3 days. Conclusion:. Cosmic fixation without fusion is safe, giving comparable results to fusion with less complications, shorter hospital stay and very modest blood loss. Although not measured as such, pain control and use of opioids were deemed much less than conventional fusion surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 4 - 4
1 Mar 2012
Chinwalla F Shafafy M Nagaria J Grevitt M
Full Access

Aim. To evaluate morbidity and outcome associated with lumbar spine decompression for central spinal stenosis in the elderly compared with younger age groups. Patients & methods. Case notes review of patients with symptomatic and MRI proven central lumber canal stenosis, under the care of a single surgeon. The study population was 3 age groups: patients < 60 year of age (Group 1, n=21), patients between 60 and 79 years (Group 2, n=54), and > age of 80 years (Group 3, n=15). Data with regard to intra- and post-operative complications and subjective outcome variables were collected. These included pain (VAS), walking distance, Oswestry Disability score (ODI) and patient satisfaction scores. Results. There was a statistically significant improvement in VAS score for leg pain (p<0.05) and back pain (p<0.05) after surgery for each group. All three groups reported improvement in their walking distance. The average walking distance improved by factor 5 in groups 1 and 2 and by factor 2.5 in group 3 (p< 0.05). However the improvement in group 3 was not statistically significant. There was a statistically significant improvement in ODI for all three groups (mean ODI improvement in Group 1, 16 points, Group 2, 23 points and Group 3, 15 points). Overall 96% of patients were satisfied and would consider the same treatment again under similar circumstances. The overall complication was 19% in group 1, 18% in group 2, and 33% in group 3. Conclusions. Surgery for neurogenic claudication in the octogenarian is associated with a higher complication rate. The outcomes however in this patient group are comparable to younger patients. Lumbar decompression surgery in octogenarians is a worthwhile procedure