Advertisement for orthosearch.org.uk
Results 1 - 20 of 570
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 22 - 22
7 Aug 2024
Saunders F Parkinson J Aspden R Cootes T Gregory J
Full Access

Background. Lateral lumbar spine statistical shape models (SSM) have been used previously to describe associations with osteoarthritis and back pain. However, associations with factors such as osteoporosis, menopause and parity have not been explored. Methods and Results. A 143-point SSM, describing L1 to the top of L5, was applied to lateral spine iDXA scans from UK Biobank. Associations with self-reported osteoporosis, menopause, parity and back pain and the first 10 modes of variation were examined using adjusted binary logistic regression or linear regression (adjusted for age, height, weight and total spine BMD). We report odds ratios with 95% confidence intervals for each standard deviation change in mode. Complete data were available for 2494 women. Mean age was 61.5 (± 7.4) years. 1369 women reported going through menopause, 96 women self-reported osteoporosis and 339 women reported chronic back pain. 80% of women reported at least 1 live birth. Lumbar spine shape was not associated with back pain in this cohort. Two modes were associated with menopause (modes 1 & 2), 1 mode with parity (mode 1) and 2 modes with osteoporosis (modes 3 & 5). Mode 1 (43.6% total variation), describing lumbar curvature was positively associated with both menopause [OR 1.15 95% CI 1.00–1.33, p=0.05] and parity [OR 1.058 95% CI 1.03–1.0, p=0.01]. Mode 3, describing decreased vertebral height was positively associated with osteoporosis [OR 1.40 95% CI 1.14–1.73, p=0.001]. Conclusion. Menopause and parity were associated with a curvier lumbar spine and osteoporosis with decreased vertebral height. Shape was not associated with back pain. No conflicts of interest.  . Sources of funding. Wellcome Trust collaborative award ref 209233


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy. Results. A total of 1,123 pedicle screws were implanted: 1,001 screws (89%) were placed robotically, 63 (6%) were converted from robotic placement to a freehand technique, and 59 (5%) were planned to be implanted freehand. Of the robotically placed screws, 942 screws (94%) were determined to be Gertzbein and Robbins grade A with median deviation of 0.8 mm (interquartile range 0.4 to 1.6). Skive events were noted with 20 pedicle screws (1.8%). No adverse clinical sequelae were noted in the 90-day follow-up. The mean fluoroscopic exposure per screw was 4.9 seconds (SD 3.8). Conclusion. RNA is highly accurate and reliable, with a low rate of abandonment once mastered. No adverse clinical sequelae occurred after implanting a large series of pedicle screws using the latest generation of RNA. Understanding of patient-specific anatomical features and the real-time intraoperative identification of risk factors for suboptimal screw placement have the potential to improve accuracy further. Cite this article: Bone Joint J 2023;105-B(5):543–550


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1096 - 1101
23 Dec 2021
Mohammed R Shah P Durst A Mathai NJ Budu A Woodfield J Marjoram T Sewell M

Aims. With resumption of elective spine surgery services in the UK following the first wave of the COVID-19 pandemic, we conducted a multicentre British Association of Spine Surgeons (BASS) collaborative study to examine the complications and deaths due to COVID-19 at the recovery phase of the pandemic. The aim was to analyze the safety of elective spinal surgery during the pandemic. Methods. A prospective observational study was conducted from eight spinal centres for the first month of operating following restoration of elective spine surgery in each individual unit. Primary outcome measure was the 30-day postoperative COVID-19 infection rate. Secondary outcomes analyzed were the 30-day mortality rate, surgical adverse events, medical complications, and length of inpatient stay. Results. In all, 257 patients (128 males) with a median age of 54 years (2 to 88) formed the study cohort. The mean number of procedures performed from each unit was 32 (16 to 101), with 118 procedures (46%) done as category three prioritization level. The majority of patients (87%) were low-medium “risk stratification” category and the mean length of hospital stay was 5.2 days. None of the patients were diagnosed with COVID-19 infection, nor was there any mortality related to COVID-19 during the 30-day follow-up period, with 25 patients (10%) having been tested for symptoms. Overall, 32 patients (12%) developed a total of 34 complications, with the majority (19/34) being grade 1 to 2 Clavien-Dindo classification of surgical complications. No patient required postoperative care in an intensive care setting for any unexpected complication. Conclusion. This study shows that safe and effective planned spinal surgical services can be restored avoiding viral transmission, with diligent adherence to national guidelines and COVID-19-secure pathways tailored according to the resources of the individual spinal units. Cite this article: Bone Jt Open 2021;2(12):1096–1101


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 31 - 31
7 Aug 2024
Williams J Meakin J Whitehead N Mills A Williams D Ward M Kelly E Shillabeer D Javadi A Holsgrove T Holt C
Full Access

Background. Our current research aims to develop technologies to predict spinal loads in vivo using a combination of imaging and modelling methods. To ensure the project's success and inform future applications of the technology, we sought to understand the opinions and perspectives of patients and the public. Methods. A 90-minute public and patient involvement event was developed in collaboration with Exeter Science Centre and held on World Spine Day 2023. The event involved a brief introduction to the project goals followed by an interactive questionnaire to gauge the participants’ background knowledge and interest. The participants then discussed five topics: communication, future directions of the research, concerns about the research protocol, concerns about data, and interest in the project team and research process. A final questionnaire was used to determine their thoughts about the event. Results. Twelve adults attended the event, many motivated by their experience or interest in back pain. A thematic analysis was used to review participant comments on the research project, identifying the need to relate the research to everyday life, present risks in various ways, and be transparent about funding and data sharing. In terms of future applications, participants felt the technology should be used to understand normal spine behaviour, prevent problems, and improve treatment. Participants agreed that they had got something positive out of engaging in the event. Conclusion. Engagement with public and patient stakeholders is an essential activity that can generate vital information to inform and add value to technology development projects. Conflicts of interest. No conflicts of interest. Sources of funding. EPSRC grants EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams)


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 201 - 204
1 Feb 2005
Schaeren S Bischoff-Ferrari HA Knupp M Dick W Huber JF Theiler R

We validated the North American Spine Society (NASS) outcome-assessment instrument for the lumbar spine in a computerised touch-screen format and assessed patients’ acceptance, taking into account previous computer experience, age and gender. Fifty consecutive patients with symptomatic and radiologically-proven degenerative disease of the lumbar spine completed both the hard copy (paper) and the computerised versions of the NASS questionnaire. Statistical analysis showed high agreement between the paper and the touch-screen computer format for both subscales (intraclass correlation coefficient 0.94, 95% confidence interval (0.90 to 0.97)) independent of computer experience, age and gender. In total, 55% of patients stated that the computer format was easier to use and 66% preferred it to the paper version (p < 0.0001 among subjects expressing a preference). Our data indicate that the touch-screen format is comparable to the paper form. It may improve follow-up in clinical practice and research by meeting patients’ preferences and minimising administrative work


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 60 - 60
1 Jun 2012
Newsome R Reddington M Breakwell L Chiverton N Cole A Michael A
Full Access

Purpose. To question the reliability of Thoracic Spine pain as a red flag and symptoms of a possible cause of Serious Spinal Pathology (SSP). Methods. The clinical notes and Magnetic Resonance Imaging (MRI) results of patients presenting to the Sheffield Spinal Service with Thoracic spine symptoms but no signs were retrospectively reviewed over the period of 2 year (September 2008-August 2010). The clinical reason for request of Thoracic MRIs were noted and the patient notes were reviewed to determine their presentation, length of time of symptoms, age and also it was noted whether any other recognized red flag symptoms were present. Exclusion criteria consisted of patients referred with known SSP or myelopathic symptoms. Results. 57 thoracic spine MRI requests were made in total by the orthopaedic spinal teams for patients presenting with thoracic spine pain in the time period. 8 patients were excluded as per criteria as they were referred with known SSP as were 4 other patients with a history of previous cancer. 45 patients presented with thoracic spine pain but no other red flag signs or symptoms of these none had MRI evidence of serious spinal pathology or indeed anything pathological indicating the cause of their symptoms. Conclusion. The majority of those presenting to orthopaedic spinal clinic with thoracic spine pain alone with no other red flag signs have no pathological cause. Thoracic pain is a widely accepted indicator (red flag) of potential serious spinal pathology. The findings from this review would not support thoracic pain alone as an indicator of SSP


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 54 - 54
1 Apr 2012
Lakshmanan P Bull D Sher J
Full Access

Generally, it is considered to be safe in preventing iatrogenic instability if half of the facet joint is left intact during decompression surgeries. By removing half of the facets can we get adequate decompression of the nerve roots? Is there a difference at different levels in the lower lumbar spine? What is the inclination of the facet joint at each level and how does it affect the stability?. Retrospective study. We analysed 200 consecutive magnetic reasonance imaging (MRI) scans of the lumbosacral spine at L3/4, L4/5, and L5/S1 levels. We measured the difference in the distance from midline to the lateral border of the foramen and from midline to the middle of the facet joint at each level on either sides. The angle of the facet joint was also noted. The distance to the foramen from the level of the middle of the facet joints seem to be between 5-6mm lateral at every level. The angle of the facet joints at L3/4 is 35.9°+/−7.4°, while at L4/5 it is 43.2°+/−8.0°, and at L5/S1 it is 49.4°+/−10.1°. In lumbar spine decompression surgeries, after the midline decompression extending up to half of the facet joints, a further undercutting of the facet joints to 5-6mm is therefore required to completely decompress the nerve root in the foramen. The more coronal orientation of the facet joint at L5/S1 conforms better stability than that at L3/4level. Therefore, stabilisation of the spine should be considered if more than 2cm of the posterior elements are removed from midline at L3/4 level


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1342 - 1347
1 Nov 2024
Onafowokan OO Jankowski PP Das A Lafage R Smith JS Shaffrey CI Lafage V Passias PG

Aims. The aim of this study was to investigate the impact of the level of upper instrumented vertebra (UIV) in frail patients undergoing surgery for adult spine deformity (ASD). Methods. Patients with adult spinal deformity who had undergone T9-to-pelvis fusion were stratified using the ASD-Modified Frailty Index into not frail, frail, and severely frail categories. ASD was defined as at least one of: scoliosis ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, or pelvic tilt ≥ 25°. Means comparisons tests were used to assess differences between both groups. Logistic regression analyses were used to analyze associations between frailty categories, UIV, and outcomes. Results. A total of 477 patients were included (mean age 60.3 years (SD 14.9), mean BMI 27.5 kg/m. 2. (SD 5.8), mean Charlson Comorbidity Index (CCI) 1.67 (SD 1.66)). Overall, 74% of patients were female (n = 353), and 49.6% of patients were not frail (237), 35.4% frail (n = 169), and 15% severely frail (n = 71). At baseline, differences in age, BMI, CCI, and deformity were significant (all p = 0.001). Overall, 15.5% of patients (n = 74) had experienced mechanical complications by two years (8.1% not frail (n = 36), 15.1% frail (n = 26), and 16.3% severely frail (n = 12); p = 0.013). Reoperations also differed between groups (20.2% (n = 48) vs 23.3% (n = 39) vs 32.6% (n = 23); p = 0.011). Controlling for osteoporosis, baseline deformity, and degree of correction (by sagittal age-adjusted score (SAAS) matching), frail and severely frail patients were more likely to experience mechanical complications if they had heart failure (odds ratio (OR) 6.6 (95% CI 1.6 to 26.7); p = 0.008), depression (OR 5.1 (95% CI 1.1 to 25.7); p = 0.048), or cancer (OR 1.5 (95% CI 1.1 to 1.4); p = 0.004). Frail and severely frail patients experienced higher rates of mechanical complication than ‘not frail’ patients at two years (19% (n = 45) vs 11.9% (n = 29); p = 0.003). When controlling for baseline deformity and degree of correction in severely frail and frail patients, severely frail patients were less likely to experience clinically relevant proximal junctional kyphosis or failure or mechanical complications by two years, if they had a more proximal UIV. Conclusion. Frail patients are at risk of a poor outcome after surgery for adult spinal deformity due to their comorbidities. Although a definitively prescriptive upper instrumented vertebra remains elusive, these patients appear to be at greater risk for a poor outcome if the upper instrumented vertebra is sited more distally. Cite this article: Bone Joint J 2024;106-B(11):1342–1347


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims. The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results. Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion. RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 20 - 20
1 Sep 2021
De La Torre C Lam KS Carriço G
Full Access

Introduction. The placement of a large interbody implant allows for a larger surface area for fusion, vis a vis, via retroperitoneal direct anterior, antero-lateral and lateral approaches. At the same time, spinal navigation facilitates a minimally invasive fixation for inserting posterior pedicle screws. We report on the first procedures in the United Kingdom performed by a single-surgeon at a single- centre using navigated robot-assisted spine surgery without the need for guide-wires. Materials and Methods. Whilst positioned in the supine or lateral position, a routine supine anterior lumbar interbody fusion (ALIF), and/or antero-lateral ALIF (AL-ALIF) and/or lateral lateral interbody fusion (LLIF) is performed. The patient is then turned prone or kept in the single lateral position (SPL) for insertion of the posterior screws performed under robotic guidance. Intraoperative CT scan 3D images captured then are sent to the Robotic software platform for planning of the screw trajectories and finally use again at the end of the procedure to confirm screw accuracy. We identified 34 consecutive patients from October 2019 to January 2020 who underwent robotic assisted spine surgery. The demographic, intraoperative, and perioperative data of all these patients were reviewed and presented. Results. Of the 34 patients, 65 levels were treated in total using 204 screws. Of the 21 patients (60%) who underwent single-level fixation, 14 of them (67%) were treated at the L5/S1 level, 3 at L3/L4, 3 at L4/L5 and 1 at L2/L3 level. The remaining 13 patients (40%) underwent multi-level fixation, of which 4 were adult scoliosis. 15 underwent a supine ALIF approach, 1 underwent AL-ALIF, 8 patients underwent combined LLIF and AL-ALIF approach in a lateral decubitus, whilst 9 underwent pure LLIF approach (of which 3 patients were in the single position lateral) and one patient had previous TLIF surgery. The average estimated blood loss was 60 cc. The average planning time was 10 min and the average duration of surgery was 50 min. The average patient age was 54 years and 64% (22/34) were male. The average BMI was 28.1 kg/m. 2. There were no re-interventions due to complications or mal positioned screws. Conclusion. Minimally invasive spine surgery using robot-assisted navigation yields an improved level of accuracy, decreased radiation exposure, minimal muscle disruption, decreased blood loss, shorter operating theatre time, length of stay, and lower complication rates. Further follow-up of the patients treated will help compare the clinical outcomes with other techniques


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 725 - 733
1 Apr 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims. The aim of this study was to determine the differences in spinal imaging characteristics between subjects with or without lumbar developmental spinal stenosis (DSS) in a population-based cohort. Methods. This was a radiological analysis of 2,387 participants who underwent L1-S1 MRI. Means and ranges were calculated for age, sex, BMI, and MRI measurements. Anteroposterior (AP) vertebral canal diameters were used to differentiate those with DSS from controls. Other imaging parameters included vertebral body dimensions, spinal canal dimensions, disc degeneration scores, and facet joint orientation. Mann-Whitney U and chi-squared tests were conducted to search for measurement differences between those with DSS and controls. In order to identify possible associations between DSS and MRI parameters, those who were statistically significant in the univariate binary logistic regression were included in a multivariate stepwise logistic regression after adjusting for demographics. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported where appropriate. Results. Axial AP vertebral canal diameter (p < 0.001), interpedicular distance (p < 0.001), AP dural sac diameter (p < 0.001), lamina angle (p < 0.001), and sagittal mid-vertebral body height (p < 0.001) were significantly different between those identified as having DSS and controls. Narrower interpedicular distance (OR 0.745 (95% CI 0.618 to 0.900); p = 0.002) and AP dural sac diameter (OR 0.506 (95% CI 0.400 to 0.641); p < 0.001) were associated with DSS. Lamina angle (OR 1.127 (95% CI 1.045 to 1.214); p = 0.002) and right facet joint angulation (OR 0.022 (95% CI 0.002 to 0.247); p = 0.002) were also associated with DSS. No association was observed between disc parameters and DSS. Conclusion. From this large-scale cohort, the canal size is found to be independent of body stature. Other than spinal canal dimensions, abnormal orientations of lamina angle and facet joint angulation may also be a result of developmental variations, leading to increased likelihood of DSS. Other skeletal parameters are spared. There was no relationship between DSS and soft tissue changes of the spinal column, which suggests that DSS is a unique result of bony maldevelopment. These findings require validation in other ethnicities and populations. Level of Evidence: I (diagnostic study). Cite this article: Bone Joint J 2021;103-B(4):725–733


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1526 - 1533
1 Dec 2019
Endler P Ekman P Berglund I Möller H Gerdhem P

Aims. Chronic low back pain due to degenerative disc disease is sometimes treated with fusion. We compared the outcome of three different fusion techniques in the Swedish Spine Register: noninstrumented posterolateral fusion (PLF), instrumented posterolateral fusion (IPLF), and interbody fusion (IBF). Patients and Methods. A total of 2874 patients who were operated on at one or two lumbar levels were followed for a mean of 9.2 years (3.6 to 19.1) for any additional lumbar spine surgery. Patient-reported outcome data were available preoperatively (n = 2874) and at one year (n = 2274), two years (n = 1958), and a mean of 6.9 years (n = 1518) postoperatively and consisted of global assessment and visual analogue scales of leg and back pain, Oswestry Disability Index, EuroQol five-dimensional index, 36-Item Short-Form Health Survey, and satisfaction with treatment. Statistical analyses were performed with competing-risks proportional hazards regression or analysis of covariance, adjusted for baseline variables. Results. The number of patients with additional surgery were 32/183 (17%) in the PLF group, 229/1256 (18%) in the IPLF group, and 439/1435 (31%) in the IBF group. With the PLF group as a reference, the hazard ratio for additional lumbar surgery was 1.16 (95% confidence interval (CI) 0.78 to 1.72) for the IPLF group and 2.13 (95% CI 1.45 to 3.12) for the IBF group. All patient-reported outcomes improved after surgery (p < 0.001) but were without statistically significant differences between the groups at the one-, two- and 6.9-year follow-ups (all p ≥ 0.12). Conclusion. The addition of interbody fusion to posterolateral fusion was associated with a higher risk for additional surgery and showed no advantages in patient-reported outcome. Cite this article: Bone Joint J 2019;101-B:1526–1533


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1208 - 1213
1 Sep 2018
Ukunda UNF Lukhele MM

Aims. The surgical treatment of tuberculosis (TB) of the spine consists of debridement and reconstruction of the anterior column. Loss of correction is the most significant challenge. Our aim was to report the outcome of single-stage posterior surgery using bone allografts in the management of this condition. Patients and Methods. The study involved 24 patients with thoracolumbar TB who underwent single-stage posterior spinal surgery with a cortical bone allograft for anterior column reconstruction and posterior instrumentation between 2008 and 2015. A unilateral approach was used for 21 patients with active TB, and a bilateral approach with decompression and closing-opening wedge osteotomy was used for three patients with healed TB. Results. A median of 1.25 vertebrae were removed (interquartile range (IQR) 1 to 1.75) and the median number of levels that were instrumented was five (IQR 3 to 6). The median operating time was 280 minutes (IQR 230 to 315) and the median blood loss was 700 ml (IQR 350 to 900). The median postoperative kyphosis was 8.5° (IQR 0° to 15°) with a mean correction of the kyphosis of 71.6%. Good neurological recovery occurred, with only two patients (8%) requiring assistance to walk at a mean follow-up of 24 months (9 to 50), at which time there was a mean improvement in disability, as assessed by the Oswestry Disability Index, of 83% (90% to 72%). Conclusion. The posterior-only approach using cortical allografts for anterior column reconstruction achieved good clinical and radiological outcomes. Differentiation should be made between flexible (active) and rigid (healed) TB spine. Cite this article: Bone Joint J 2018;100-B:1208–13


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 15 - 15
1 Oct 2019
Saunders F Gregory J Pavlova A Muthuri S Hardy R Martin K Barr R Adams J Kuh D Aspden R Cooper R Ireland A
Full Access

Purpose and Background. Both overall spine shape and the size and shape of individual vertebrae undergo rapid growth and development during early childhood. Motor development milestones such as age of walking influence spine development, with delayed ambulation linked with spinal conditions including spondylolysis. However, it is unclear whether associations between motor development and spine morphology persist into older age. Therefore, these associations were examined using data from the MRC National Survey of Health and Development, a large nationally-representative British cohort, followed up since birth in 1946. Methods and Results. Statistical shape modelling was used to characterise spinal shape (L5-T10) and identify modes of variation in shape (SM) from dual energy x-ray absorptiometry images of the spine taken at age 60–64 years (N=1327 individuals; 51.8% female). Associations between walking age in months (reported by mothers at 2 years) and SMs were examined with adjustment for sex, birthweight, socioeconomic position, height, lean mass and fat mass. Later onset of independent walking was weakly associated with greater lordosis (SM1; P=0.05) and more uniform antero-posterior vertebral size along the spine (SM6, P=0.07). Later walking age was also associated with smaller relative anterior-posterior vertebral dimensions (SM3) among women whereas the opposite was found for men (P <0.01 for sex interaction). Conclusions. Spinal morphology in early old age was associated with the age that individuals began walking independently in childhood, potentially due to altered mechanical loading. This suggests that motor development may have a persisting effect on clinically-relevant features of spine morphology throughout life. Conflict of interest: None. Funded by the UK Medical Research Council (Grant MR/L010399/1) which supported FRS, SGM and AVP


Bone & Joint Open
Vol. 2, Issue 3 | Pages 198 - 201
1 Mar 2021
Habeebullah A Rajgor HD Gardner A Jones M

Aims. The British Spine Registry (BSR) was introduced in May 2012 to be used as a web-based database for spinal surgeries carried out across the UK. Use of this database has been encouraged but not compulsory, which has led to a variable level of engagement in the UK. In 2019 NHS England and NHS Improvement introduced a new Best Practice Tariff (BPT) to encourage input of spinal surgical data on the BSR. The aim of our study was to assess the impact of the spinal BPT on compliance with the recording of surgical data on the BSR. Methods. A retrospective review of data was performed at a tertiary spinal centre between 2018 to 2020. Data were collated from electronic patient records, theatre operating lists, and trust-specific BSR data. Information from the BSR included operative procedures (mandatory), patient consent, email addresses, and demographic details. We also identified Healthcare Resource Groups (HRGs) which qualified for BPT. Results. A total of 3,587 patients were included in our study. Of these, 1,684 patients were eligible for BPT. Between 2018 and 2019 269/974 (28%) records were complete on the BSR for those that would be eligible for BPT. Following introduction of BPT in 2019, 671/710 (95%) records were complete having filled in the mandatory data (p < 0.001). Patient consent to data collection also improved from 62% to 93%. Email details were present in 43% of patients compared with 68% following BPT introduction. Conclusion. Our study found that following the introduction of a BPT, there was a statistically significant improvement in BSR record completion compliance in our unit. The BPT offers a financial incentive which can help generate further income for trusts. National data input into the BSR is important to assess patient outcome following spinal surgery. The BSR can also aid future research in spinal surgery. Cite this article: Bone Jt Open 2021;2-3:198–201


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 19 - 19
1 Feb 2016
Pavlova A Cooper K Meakin J Barr R Aspden R
Full Access

Purpose and Background:. Healthy adults with a curvy (lordotic) lumbar spine were shown to lift a load from the floor by stooping, while straight (flat) spines squatted. Since skin-surface motion capture often misrepresents internal curvature this study calculated internal lumbar curvature during lifting in the same cohort and compared lumbosacral motion. Methods:. Magnetic resonance imaging (MRI) was performed in standing and bending forward to 30, 45 and 60°, with markers on the skin at L1, L3, L5 and S1. Lumbar spine shape was characterised using statistical shape modelling and participants grouped into ‘curvy’ and ‘straight’ spine sub-groups (N=8). On a separate day participants lifted a box (6–15 kg) from the floor without instruction while Vicon cameras tracked sagittal movement of L1, L3 and L5 skin markers. Sacral angle (to horizontal) was calculated from pelvic markers. Matching markers during MRI and lifting sessions allowed vertebral centroid positions (L1, L3, L5, S1) during lifting to be calculated using custom MATLAB code. Results:. The curvy group had more internal lumbar lordosis at pick up despite stooping to lift the load. From upright standing motion occurred earlier at the upper lumbar levels (L1–L3) compared with lower lumbar (L3–L5). During lifting straight spines had greater rigid-body motion of the entire lumbar spine compared with curvy spines who demonstrated more varied intersegmental motion with greater sacral flexion. Conclusion:. Individuals with very lordotic spines retained some degree of internal lordosis despite stooping when lifting. The lumbar spine appears more mobile at the upper levels, L1–L3, and constrained motion was seen in those with the least lordosis


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 3 - 3
1 Aug 2022
Tailor P Sewell M Jones M Spilsbury J Marks D Gardner A Mehta J
Full Access

The lordosis distribution index (LDI) describes distribution of lumbar lordosis, measured as the % of lower lumbar lordosis (L4-S1) compared to global lordosis (L1-S1) with normal value 50–50%. Maldistributed LDI is associated with higher revision in short lumbar fusions, 4 vertebrae1. We hypothesise maldistributed LDI is also associated with mechanical failure in longer fusions. Retrospective review of 29 consecutive ASD patients, aged 55+, undergoing long lumbar fusion, 4 levels, with >3-years follow-up. LDI, pelvic incidence (PI) and sagittal vertical axis (SVA) were measured on pre- and post-op whole spine standing X-rays (Fig A and B). Patients were categorized according to their pelvic incidence (PI) and postoperative LDI: Normal (LDI 50 80), Hypolordotic (LDI < 50), or Hyperlordotic (LDI > 80) and assessed for failure rate compared to normal LDI and PI <60. Mean follow-up 4.5 years. 19 patients had mechanical failures including junctional failure and metalware fracture. PI >60o was associated with higher mechanical failure rates (Chi^2 p<0.05). Hypolordotic LDI was associated with 82% mechanical failure (Chi^2 p<0.001), Hyperlordotic 88% mechanical failure (Chi^2 p<0.001) and Normal 8% mechanical failure (Table 1). Maldistributed LDI, whether Hyperlordotic or Hypolordotic, correlated with 10× greater mechanical failure rate compared to Normal LDI in long fusions. LDI is a useful measurement that should be considered, especially in high PI patients


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 25 - 25
1 Feb 2015
Pavlova A Eseonu O Jeffrey J Barr R Cooper K Aspden R
Full Access

Purpose and Background. Low birth weight is related to decreased lumbar spine vertebral canal size and bone mineral content later in life, suggesting that antenatal factors affect spine development. The purpose of this study was to explore associations between antenatal factors and lumbar spine morphology in childhood. Methods. Antenatal data and supine MR images of the lumbar spine were available for 161 children. Shape modelling, using principle components analysis, was performed on mid-sagittal images to quantify different modes of variation in lumbar spine shape. Previously collected measures of spine canal dimensions were analysed. Results. Almost 75 % of all of the variation in lumbar spine shape was explained by just three modes. Modes 1 and 3 described the total amount and the distribution of curvature along the spine, respectively. Mode 2 (M2) captured variation in vertebral shape and size; increasing mode scores represented flatter vertebral bodies with increasing anterior-posterior dimensions. We saw no significant associations between mode scores and birth weight z-scores, placental weight, gestation length and no effect of maternal smoking (P>0.05). Controlling for gestation length revealed a positive correlation between birth weight and M2 (P=0.02). Males, longer babies and those from heavier mothers had higher M2 scores (P<0.05). This sex difference remained even when controlling for the other factors (P<0.001). Modes 1 and 2 correlated with spine canal dimensions (P<0.05). Conclusions. Our results suggest that antenatal factors have some effect on vertebral body morphology but not overall lumbar spinal shape. Perhaps environmental factors during growth and genetics play a larger role in determining the overall spine shape. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting. Conflicts of interest: No conflicts of interest. Sources of funding: This work was supported by a studentship granted to the University and awarded to AVP


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 982 - 987
1 Jul 2015
Ganesan S Karampalis C Garrido E Tsirikos AI

Acute angulation at the thoracolumbar junction with segmental subluxation of the spine occurring at the level above an anteriorly hypoplastic vertebra in otherwise normal children is a rare condition described as infantile developmental thoracolumbar kyphosis. Three patient series with total of 18 children have been reported in the literature. We report five children who presented with thoracolumbar kyphosis and discuss the treatment algorithm. We reviewed the medical records and spinal imaging at initial clinical presentation and at minimum two-year follow-up. The mean age at presentation was eight months (two to 12). All five children had L2 anterior vertebral body hypoplasia. The kyphosis improved spontaneously in three children kept under monitoring. In contrast, the deformity was progressive in two patients who were treated with bracing. The kyphosis and segmental subluxation corrected at latest follow-up (mean age 52 months; 48 to 60) in all patients with near complete reconstitution of the anomalous vertebra. The deformity and radiological imaging on a young child can cause anxiety to both parents and treating physicians. Diagnostic workup and treatment algorithm in the management of infantile developmental thoracolumbar kyphosis is proposed. Observation is indicated for non-progressive kyphosis and bracing if there is evidence of kyphosis and segmental subluxation deterioration beyond walking age. Surgical stabilisation of the spine can be reserved for severe progressive deformities unresponsive to conservative treatment. . Cite this article: Bone Joint J 2015;97-B:982–7


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 30 - 30
1 Feb 2015
Stone M Osei-Boredom D MacGregor A Williams F
Full Access

Background. The factors influencing normal spine curvature in midlife are unknown. We performed an MR and plain radiograph study on well characterised, unselected twin volunteers from the TwinsUK register (. www.twinsuk.ac.uk. ) to determine the relative contributions of genetic and environmental factors to spine curve. Methods. T2 weighted MR scans and long spine standing radiographs were obtained at the same morning visit on twin pairs. Midline sagittal MR images were coded for 4 degenerative features. SpineviewTM software was applied plain films and calculated the angles of curvature. A classical twin study was performed. Multivariate regression analysis was used to determine the association between spine curves, LDD and confounders (age, body mass index). Results. Data were available on 110 monozygotic (MZ) and 136 dizygotic (DZ) female twins. Mean age was 64.3 years (range 40.1–79.3); age was associated with increasing lumbar lordosis (p=0.02). The AE model (comprising additive genetic and unique environmental factors) was the most suitable model for both lumbar lordosis and thoracic kyphosis (as determined by Akaike information criterion). Heritability estimates = 59% (42–71%) for lumbar lordosis; and 61% (46–74%) for thoracic kyphosis. After adjusting for age and BMI, lumbar lordosis was significantly associated with a number of features of LDD (p<0.001) including disc signal intensity and osteophytes. Conclusion. The twins are known to be representative of women in the general population. Lumbar lordosis and thoracic kyphosis of the spine have considerable heritable component in females suggesting that a search for individual gene variants would be a reasonable next step. This abstract was presented at 14th Congress of the International Society for Twin Studies. Conflicts of interest: No conflicts of interest. Sources of funding: No funding obtained