Abstract
Purpose and Background
Low birth weight is related to decreased lumbar spine vertebral canal size and bone mineral content later in life, suggesting that antenatal factors affect spine development. The purpose of this study was to explore associations between antenatal factors and lumbar spine morphology in childhood.
Methods
Antenatal data and supine MR images of the lumbar spine were available for 161 children. Shape modelling, using principle components analysis, was performed on mid-sagittal images to quantify different modes of variation in lumbar spine shape. Previously collected measures of spine canal dimensions were analysed.
Results
Almost 75 % of all of the variation in lumbar spine shape was explained by just three modes. Modes 1 and 3 described the total amount and the distribution of curvature along the spine, respectively. Mode 2 (M2) captured variation in vertebral shape and size; increasing mode scores represented flatter vertebral bodies with increasing anterior-posterior dimensions. We saw no significant associations between mode scores and birth weight z-scores, placental weight, gestation length and no effect of maternal smoking (P>0.05). Controlling for gestation length revealed a positive correlation between birth weight and M2 (P=0.02). Males, longer babies and those from heavier mothers had higher M2 scores (P<0.05). This sex difference remained even when controlling for the other factors (P<0.001). Modes 1 and 2 correlated with spine canal dimensions (P<0.05).
Conclusions
Our results suggest that antenatal factors have some effect on vertebral body morphology but not overall lumbar spinal shape. Perhaps environmental factors during growth and genetics play a larger role in determining the overall spine shape.
This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting.
Conflicts of interest: No conflicts of interest
Sources of funding: This work was supported by a studentship granted to the University and awarded to AVP.