Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 310 - 310
1 Mar 2002
Laurence M


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 6 | Pages 975 - 981
1 Nov 1994
Field R Buchanan J Copplemans M Aichroth P

Between 1980 and 1988, displacement bone-marrow transplantation was performed on 25 children with Hurler's syndrome (type-1 mucopolysaccharidosis). We describe the musculoskeletal development of 11 of the 12 surviving children and the orthopaedic procedures undertaken to treat progressive thoracolumbar kyphosis, hip subluxation and carpal tunnel syndrome. We found abnormal bone modelling, focal failures of ossification and an avascular disorder of the femoral head in every patient and offer an explanation for these phenomena. Increasing valgus deformity of the knees and progressive generalised myopathy caused loss of mobility as the children entered adolescence. The benefit of bone-marrow transplantation as a treatment for the skeletal disorders of Hurler's syndrome is limited by the poor penetration of the musculoskeletal tissues by the enzyme derived from the leucocytes.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116





Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 87 - 87
2 Jan 2024
Moura S Olesen J Barbosa M Soe K Almeida M
Full Access

Osteoclasts (OCs) are multinucleated cells that play a pivotal role in skeletal development and bone remodeling. Abnormal activation of OCs contributes to the development of bone-related diseases, such as osteoporosis, bone metastasis and osteoarthritis. Restoring the normal function of OCs is crucial for bone homeostasis. Recently, RNA therapeutics emerged as a new field of research for osteoarticular diseases. The aim of this study is to use non-coding RNAs (ncRNAs) to molecularly engineer OCs and modulate their function. Specifically, we investigated the role of the microRNAs (namely miR-16) and long ncRNAs (namely DLEU1) in OCs differentiation and fusion. DLEU1/DLEU2 region, located at chromosome 13q14, also encodes miR-15 and miR-16. Our results show that levels of these ncRNA transcripts are differently expressed at distinct stages of the OCs differentiation. Specifically, silencing of DLEU1 by small interfering RNAs (siDLEU1) and overexpression of miR-16 by synthetic miRNA mimics (miR-16-mimics) led to a significant reduction in the number of OCs formed per field (OC/field), both at day 5 and 9 of the differentiation stage. Importantly, time-lapse analysis, used to track OCs behavior, revealed a significant decrease in fusion events after transfection with siDLEU1 or miR-16-mimics and an alteration in the fusion mode and partners. Next, we investigated the migration profile of these OCs, and the results show that only miR-16-mimics-OCs, but not siDLEU-OCs, have a lower percentage of immobile cells and an increase in cells with mobile regime, compared with controls. No differences in cell shape were found. Moreover, mass-spectrometry quantitative proteomic analysis revealed independent effects of siDLEU1 and miR-16-mimics at the protein levels. Importantly, DLEU1 and miR-16 act by distinct processes and pathways. Collectively, our findings support the ncRNAs DLEU1 and miR-16 as therapeutic targets to modulate early stages of OCs differentiation and, consequently, to impair OC fusion, advancing ncRNA-therapeutics for bone-related diseases. Acknowledgements: Authors would like to thank to AO CMF / AO Foundation (AOCMFS-21-23A). SRM and MIA are supported by FCT (SFRH/BD/147229/2019 and BiotechHealth Program; CEECINST/00091/2018/CP1500/CT0011, respectively)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 33 - 33
1 Apr 2018
Timur UT Emans P van Rhijn L Welting T
Full Access

Introduction. Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation. Methods. The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated transfection (1,000 ng of plasmid/well in 12-well plates). FLAG-Empty vector was used as a negative control. FLAG-CART-1 overexpression was confirmed by means of anti-FLAG immunoblotting. To investigate a potential connection between CART-1 and established key chondrogenic pathways, TGFβ3 (10 ng/mL) was added to SW1353 cells in CART-1 overexpression cultures or their appropriate controls. Cells were harvested 48 hours after transfection and mRNA expression of several genes involved in chondrogenic differentiation was determined by qRT-PCR. Data represent three separate experiments performed in technical triplicate. Results. Overexpression of CART-1 was confirmed on protein level. CART-1 significantly upregulated the expression of hypertrophic markers MMP13 and COLX, while the expression of RUNX2, ALP and COL1 was significantly downregulated. The expression of COL2A1 and SOX9 was not altered in the presence of CART1. TGFβ3 significantly decreased MMP13 expression in SW1353 cultures, but induced the expression of COLX, RUNX2 and COL1. This TGFβ3 dependent behaviour was reversed when CART-1 was overexpressed in these cultures. Conclusion. Our results implicate a functional role for the homeodomain protein CART-1 in controlling the expression of several markers involved in chondrocyte differentiation and show important interactions with other signaling pathways involved in chondrogenic differentiation. Current efforts focus on further elucidating the connection between CART-1 and other chondrogenic pathways



Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 21 - 21
1 Apr 2018
Caron M Castermans T van Rietbergen B Haartmans M van Rhijn L Witlox A Welting T
Full Access

INTRODUCTION. Endochondral ossification in the growth plate is directly responsible for skeletal growth and its de novo bone-generating activity. Growth plates are vulnerable to disturbances that may lead to abnormal skeletal development. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used analgesics but have been reported to impair endochondral ossification-driven fracture healing. Despite the general awareness that NSAIDs affect endochondral ossification, the consequences of NSAIDs on skeletal development are unknown. We hypothesise that the NSAID celecoxib leads to impaired growth plate development and consequently impairs skeletal development. METHODS. Healthy skeletally immature (5 weeks old) C57BL/6 mice were treated for ten weeks with celecoxib (daily oral administration 10 mg/kg) or placebo (water) (institutional approval 2013–094) (n=12 per group). At 15 weeks postnatally, total growth plate thickness, the thickness of specific growth plate zones, (immuno)histological analysis of extracellular matrix composition in the growth plate, cell number and cell size, longitudinal bone growth and bone micro-architecture by micro-CT were analysed. Inhibition of COX-2 activity was confirmed by determining PGE2 levels in plasma using an ELISA. RESULTS. No significant difference in total growth plate thickness or thickness of the resting zone, proliferative or hypertrophic zone was found between groups. Staining of growth plate extracellular matrix components revealed, however, a significantly higher proteoglycan content and less collagen type II staining in the proliferative zone. In the hypertrophic zone of the growth plates of celecoxib treated mice collagen type X was hardly detectable as compared to placebo mice. In addition, a significantly decreased cell number was observed in the hypertrophic zone of the growth plate and cells were significantly smaller in the celecoxib group. Micro-CT analysis of the subchondral bone region directly beneath the growth plate showed significantly higher bone density, bone volume density and trabecular thickness following celecoxib treatment. Despite the detected differences in extracellular matrix composition of the growth plate, no difference was found in the length of the tibia in celecoxib treated mice. DISCUSSION. In summary, there are no measurable differences found in murine skeletal formation as a result of treatment with celecoxib in this study. However, there are notable phenotypic features found in the maturation of the growth plate (hypertrophic zone and subchondral bone) as a result from the celecoxib treatment, of which the potential consequences we do not yet understand. SIGNIFICANCE. When follow-up actions from the use of celecoxib on the growing individual are found this may warrant re-evaluation for the use of celecoxib in these individuals


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 41 - 41
1 Mar 2013
Mahmood W Smith H Mukherjee A McGonnell I
Full Access

TGF-beta signaling has a well established role not only in adult organ homeostasis but also in skeletal development. Follistatin-like 3 (FSTL3), related to follistatin, is an inhibitor of TGF-beta ligands, with an established role in glucose and fat metabolism. However it has not previously been studied in skeletal development. Using a FSTL3 knock-out (KO) mouse model we have studied both embryonic skeletal development and adult bone phenotypes. Staining for skeletal and cartilage markers during development shows acceleration of skeletal tissue differentiation, with an eventual normalization at E18.5 (which is just prior to birth). Acceleration of bone mineralization occurs during both endochondral and intramembranous ossification. Use of micro-CT imaging highlighted the development of a scoliosis in the KO animals, along with abnormal shape of cranium and cranial sutures. Further investigation of the cranial phenotype in adult KO mice reveals craniosynastosis, with atypical fusion of the frontal suture. These mice have a change in overall cranial shape with shortening of the anterior head and a compensatory expansion of the posterior cranial bones, in a similar fashion to brachyencephaly. Our study therefore highlights a significant role of FSTL3 in skeletal tissue development and mineralization, as well as the development of clinically significant skeletal developmental disorders such as scoliosis, craniosynastosis and brachyencephaly


Bone & Joint Research
Vol. 10, Issue 2 | Pages 137 - 148
1 Feb 2021
Lawrence EA Aggleton J van Loon J Godivier J Harniman R Pei J Nowlan N Hammond C

Aims. Vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, with sarcopenia and osteoporosis observed in astronauts returning from space, the effects of shorter exposures to increased gravitational fields are less well characterized. We aimed to test how hypergravity affects early cartilage and skeletal development in a zebrafish model. Methods. We exposed zebrafish to 3 g and 6 g hypergravity from three to five days post-fertilization, when key events in jaw cartilage morphogenesis occur. Following this exposure, we performed immunostaining along with a range of histological stains and transmission electron microscopy (TEM) to examine cartilage morphology and structure, atomic force microscopy (AFM) and nanoindentation experiments to investigate the cartilage material properties, and finite element modelling to map the pattern of strain and stress in the skeletal rudiments. Results. We did not observe changes to larval growth, or morphology of cartilage or muscle. However, we observed altered mechanical properties of jaw cartilages, and in these regions we saw changes to chondrocyte morphology and extracellular matrix (ECM) composition. These areas also correspond to places where strain and stress distribution are predicted to be most different following hypergravity exposure. Conclusion. Our results suggest that altered mechanical loading, through hypergravity exposure, affects chondrocyte maturation and ECM components, ultimately leading to changes to cartilage structure and function. Cite this article: Bone Joint Res 2021;10(2):137–148


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 73 - 73
1 Jul 2020
Albiero A Piombo V Diamanti L Birch M McCaskie A
Full Access

Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the synovium. They are relevant to cartilage homeostasis and, like MSCs, are increasingly identified as candidates for joint repair and regenerative cell therapy. Both chondrocytes and MSCs can be regulated by the Wnt and TGFβ pathways. Dishevelled Binding Antagonist of Beta-Catenin (Dact) family of proteins is an important modulator of Wnt and TGFβ pathways. These pathways are key to MSC and chondrocyte function but, to our knowledge, the role of DACT protein has not been studied in these cells. DACT1 and DACT2 were localised by immunohistochemistry in the developing joints of mouse embryos and in adult human cartilage obtained from knee replacement. RNAi of DACT1 and DACT2 was performed on isolated chondrocytes and MSCs from human bone marrow. Knockdown efficiency and cell morphology was confirmed by qPCR and immunofluorescence. To understand which pathways are affected by DACT1, we performed next-generation sequencing gene expression analysis (RNAseq) on cells where DACT1 had been reduced by RNAi. Top statistically significant (p < 0 .05) 200 up and downregulated genes were analysed with Ingenuity® Pathway Analysis software. We observed DACT1 and DACT2 in chondrocytes throughout the osteoarthritic tissue, including in chondrocytes forming cell clusters. On the non-weight bearing and visually undamaged cartilage, DACT1 and DACT2 was localised to the articular surface. Furthermore, in mouse embryos (E.15.5), we observed DACT2 at the interzones, sites of developing synovial joints, suggesting that DACT2 has a role in cartilage progenitor cells. We subsequently analysed the expression of DACT1 and DACT2 in MSCs and found that both are expressed in synovial and bone marrow-derived MSCs. We then performed an RNAi knockdown experiment. DACT1 knockdown in both chondrocyte and MSCs caused the cells to undergo apoptosis within 24 hours. The RNA-seq study of DACT1 silenced bone marrow-derived MSCs, from 4 different human subjects, showed that loss of DACT1 has an effect on the expression of genes involved in both TGFβ and Wnt pathways and putative link to relevant cell regulatory pathways. In summary, we describe for the first time, the presence and biological relevance of DACT1 and DACT2 in chondrocytes and MSCs. Loss of DACT1 induced cell death in both chondrocytes and MSCs, with RNA-seq analysis revealing a direct impact on transcript levels of genes involved in the Wnt and TFGβ signalling, key regulatory pathways in skeletal development and repair


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 84 - 84
1 Nov 2018
Shastri VP Sarem M
Full Access

Mesenchymal stem cells (MSCs) have been long studied for their role in skeletal development. MSCs are unique in adult physiology in that they exhibit pluripotency and differentiate into cells that can evolve into various skeletal tissue as a result have been extensively employed as a viable alternative to terminally differentiated cells in engineering of cartilage and bone tissue ex vivo and in vivo. In spite of decades of effort in this direction, our understanding of what drives MSC fate choices is rather narrow in that it places heavy emphasis on a role for morphogens and cytokines (TGF-beta super family, FGF-2). In recent years it has become evident that MSCs also play an important role in wound healing, immunomodulation (immune suppression) and in tumour progression. However, what becomes of an MSC when it arrives at or exits an environment is less understood. We hypothesize that activation of differentiation programs in MSCs have an autocrine and paracrine component involving interplay between MSC-MSC (cell-cell contact) and MSC-(environment), and in this signalling paradigm the biophysical aspects of their microenvironment play a dominant role. We have tested this premise in several aspects of MSC behaviour (proliferation, migration, differentiation, chondrogenesis) and have gathered compelling evidence for biophysics and mechanobiology in MSC fate decisions. This talk will present some of our latest findings in this broad arena


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 128 - 128
1 Nov 2018
Hecht N Richter W
Full Access

Dynamic loading is necessary for the preservation of native cartilage, but mechanical disuse is one major risk factor for osteoarthritis (OA). As post-transcriptional regulators, microRNAs (miRs) represent promising molecules to quickly adjust the cellular transcriptome in a stimulus-dependent manner. Several miR clusters were related to skeletal development, joint homeostasis and OA pathophysiology but whether miRs are associated with mechanosensitivity and regulated by mechanotransduction is so far unknown. We aimed to investigate the influence of mechanical loading on miR expression and to identify mechanosensitive miR clusters characteristic for non-beneficial loading regimes which may serve as future tools for improved diagnosis or intervention during OA development. Loading regimes leading to an anabolic or catabolic chondrocyte response were established based on an increase or decrease of proteoglycan synthesis after loading of human engineered cartilage. miR microarray profiling at termination of loading revealed only small changes of miR expression (7 significantly upregulated miRs) by an anabolic loading protocol while catabolic stimulation produced a significant regulation of 80 miRs with a clear separation of control and compressed samples by hierarchical clustering. Overall regulation of 8/14 miR was confirmed by qRT-PCR with mean amplitudes of up to 2.5-fold for catabolic loading. Cross-testing revealed that 2 miRs were upregulated by both loading conditions and 6 were specifically elevated by the catabolic loading regime. Conclusively, this study defines the first mechanosensitive miR cluster associated with non-beneficial compressive cyclic loading of human engineered cartilage which can now be tested for its diagnostic potential in healthy versus OA-affected human cartilage


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 44 - 44
1 Oct 2018
Ji G Xu R Niu Y Turajane K Li N Greenblatt MB Yang X Bostrom M
Full Access

Introduction. Poor osseointegration of cementless implants is the leading clinical cause of implant loosening, subsidence, and replacement failure, which require costly and technically challenging revision surgery. The mechanism of osseointegration requires further elucidation. We have recently developed a novel titanium implant for the mouse tibia that maintains in vivo knee joint function and allows us to study osseointegration in an intra-articular, load-bearing environment. Vascular endothelial growth factor (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. It also plays critical roles in skeletal development and bone repair and regeneration. A specialized subset of vascular endothelium, CD31. hi. EMCN. hi. cells displaying high cell surface expression of CD31 and Endomucin, has been reported to promote osteoblast maturation and may be responsible for bone formation during development and fracture healing. Because of their potential role in osseointegration, the aim of this study was to use our mouse implant model to investigate the role of VEGF and CD31. hi. EMCN. hi. endothelium in osseointegration. Methods. Under an IACUC-approved protocol, the implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (N = 38). The mice were then randomized into 2 groups: Control group (N=19) and Anti-VEGFR group (N=19). A cocktail of VEGFR-1 antibody (25mg/kg) and VEGFR-2 antibody (25mg/kg) was given to the mice in the Anti-VEGFR group by intraperitoneal injection every third day starting immediately after surgery until euthanasia. An equivalent amount of an isotype control antibody was given to the control group. Flow cytometric (N = 4/group) and immunofluorescencent (N = 3/group) analyses were performed at 2 weeks post-implantation to detect the distribution and density of CD31. hi. EMCN. hi. endothelium in the peri-implant bone. Pull-out testing was used at 4 weeks post-implantation to determine the strength of the bone-implant interface. Results. Flow cytometry revealed that Anti-VEGFR treatment decreased CD31. hi. EMCN. hi. vascular endothelium percentage in the peri-implant bone vs. control (p = 0.039) at 2 weeks post-implantation (Fig. 1). This was confirmed by the decrease of CD31 and EMCN double positive cells detected with immunofluorescence at the same time point (Fig. 2). More importantly, anti-VEGFR treatment decreased the maximum load of pullout testing compared with control (p = 0.042) (Fig. 3). Conclusion. VEGF is a key mediator of osseointegration and the development of CD31. hi. EMCN. hi. endothelium. This may provide a new drug target for the enhancement of osseointegration. We have also developed a system to run flow cytometric analysis and perform fluorescent staining on the limited tissue around the implant in this mouse model. This will be a powerful platform for future mechanistic studies on osseointegration. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 32 - 32
1 Apr 2017
Duncan C
Full Access

There has been a reluctance, until relatively recently, to consider replacement of the hip in patients with substantial neuromuscular imbalance. This relates to many factors, including the young age of many (such as cerebral palsy in the older teen and young adult), developmental anatomic abnormality, oft-present poor bone health, neuromuscular imbalance, and the risk of complication; especially dislocation. Mental retardation also introduces challenges with rehabilitation and an increased burden on the family and societal support systems if the outcome is to be maximised. With the development of newer techniques and technology, and the emergence of encouraging outcome studies, these patients can be more easily offered predictable relief of pain, a reasonable chance of improved function, longevity of the reconstruction, and an acceptable risk of complication. A large number of background neurological diagnoses can lead to hip degeneration, or can introduce increased complexity during management of hip degeneration unrelated to that background. Be that as it may, a short list of fundamental questions is common to all and will help guide management:. Important questions to be addressed include:. 1. Did the NV imbalance precede skeletal development? This relates to the dependence of skeletal shape and size on the loads being placed upon it: hence “Form Follows Function”. The shape and size of the hip, and location of the femoral head, will be much different in the young adult with spastic dislocation due to cerebral palsy, when compared with the elderly adult with a late onset CVA-related spasticity superimposed on hip degeneration. 2. Is the muscle tone which will support the hip arthroplasty predominantly spastic or flaccid? In each there is a risk of dislocation, which needs to be addressed at the index procedure, but in spasticity there is the added question as to what tissues need to be released or de-functioned so as to alter the magnitude and direction of the joint reaction forces. 3. Is pain the main reason for consultation? Because pain relief is the most predictable outcome that we can offer, it should guide the indications and timing of intervention. Replacement of the NM hip to improve function, in the absence of pain, should be approached with great caution


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


The Journal of Bone & Joint Surgery British Volume
Vol. 61-B, Issue 1 | Pages 18 - 25
1 Feb 1979
Hall D Harrison M Burwell R

This paper reports a high incidence of minor congenital anomalies in boys and girls with Perthes' disease compared with that in a control population. There is a similarity of the incidence of minor anomalies in the children with Perthes' disease to that in babies with a single major congenital defect. Multiple major defects were more numerous and more severe than in the control children. It is speculated that there may be a congenital abnormality affecting skeletal development which in some way makes the hip susceptible to Perthes' disease at a later date