Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MECHANOSENSITIVE miR CLUSTERS REGULATED AFTER LOADING OF HUMAN ENGINEERED CARTILAGE

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 1, Galway, Ireland, September 2018.



Abstract

Dynamic loading is necessary for the preservation of native cartilage, but mechanical disuse is one major risk factor for osteoarthritis (OA). As post-transcriptional regulators, microRNAs (miRs) represent promising molecules to quickly adjust the cellular transcriptome in a stimulus-dependent manner. Several miR clusters were related to skeletal development, joint homeostasis and OA pathophysiology but whether miRs are associated with mechanosensitivity and regulated by mechanotransduction is so far unknown. We aimed to investigate the influence of mechanical loading on miR expression and to identify mechanosensitive miR clusters characteristic for non-beneficial loading regimes which may serve as future tools for improved diagnosis or intervention during OA development. Loading regimes leading to an anabolic or catabolic chondrocyte response were established based on an increase or decrease of proteoglycan synthesis after loading of human engineered cartilage. miR microarray profiling at termination of loading revealed only small changes of miR expression (7 significantly upregulated miRs) by an anabolic loading protocol while catabolic stimulation produced a significant regulation of 80 miRs with a clear separation of control and compressed samples by hierarchical clustering. Overall regulation of 8/14 miR was confirmed by qRT-PCR with mean amplitudes of up to 2.5-fold for catabolic loading. Cross-testing revealed that 2 miRs were upregulated by both loading conditions and 6 were specifically elevated by the catabolic loading regime. Conclusively, this study defines the first mechanosensitive miR cluster associated with non-beneficial compressive cyclic loading of human engineered cartilage which can now be tested for its diagnostic potential in healthy versus OA-affected human cartilage.


Email: