Introduction. Flexion instability of the knee accounts for, up to, 22% of reported revisions following TKA. It can present in the early post-operative phase or present— secondary to a rupture of the PCL— in the late post-operative phase. While most reports of instability occur in conjunction with cruciate retaining implants, instability in a posterior-stabilized knee is not uncommon. Due to the prevalence of revision due to instability, the purpose of constructing the following techniques is to utilize intraoperative sensors to quantify flexion gap stability. Methods. 500 posterior cruciate-retaining TKAs were performed between September 2012 and April 2013, by four collaborating surgeons. All surgeons used the same implant system, compatible with a microelectronic tibial insert with which to receive real-time feedback of femoral contact points and joint kinetics. Intraoperative kinematic data, as reported on-screen by the VERASENSE™ knee application, displayed similar loading patterns consistent with identifiable sagittal plane abnormalities. These abnormalities were classified as: “Balanced Flexion Gap,” “Flexion Instability” and “Tight Flexion Gap.” All abnormalities were addressed with the techniques described herein. Results. Balanced Flexion Gap. Flexion balance was achieved when femoral contact points were within the mid-posterior third (Figure 1) of the tibial insert, symmetrical rollback was seen through ROM, intercompartmental loads were balanced, and central contact points displayed less than 10 mm of excursion across the bearing surface during a posterior drawer test. Flexion Instability. The femoral contact point tracking option dynamically displayed the relative motion of distal femur to the proximal tibia during the posterior drawer test, and through range of motion. Excessive excursion of the femoral contact points across the bearing surface, and femoral contact points translating through the anterior third of the tibial trial, was an indication of laxity in the PCL. Surgical correction requires use of a thicker tibial insert, anterior-constrained insert, or a posterior-stabilized knee design (Figure 2). Tight Flexion Gap. Excessive tension in the PCL was displayed during surgery via femoral contact points and excessive high pressures in the posterior compartment during flexion. When a posterior drawer test was applied no excursion of the femoral tibia contact point was seen. Excessively high loading in the posteromedial compartment was corrected through recession of the PCL using an 19 gauge needle or 11 blade. Additional tibial slope was added when excessive loads were seen in both compartments (Figure 3). Discussion. Flexion gap instability, or excessive PCL tension, is a common error resulting in poor patient outcomes and early revision surgery. The techniques described, utilized intraoperative sensor data to address sagittal plane abnormalities in a quantified manner. By using technology to guide the surgeon through appropriate sagittal plane correction, the subtleties in soft-tissue imbalance or suboptimal bone cuts can be accounted for, which otherwise may be overlooked by traditional methods of subjective surgeon “feel.” Longer clinical follow-up of these patients will be necessary to track the outcomes associated with quantifiable
Introduction. Pedicle Subtraction osteotomy (PRO) in correction of severe spinal deformities is well established. Prospective analysis of its efficacy in complex spinal deformities is sparse in literature. Aims and objectives. To assess the role of PRO in correction of uniplanar and multiplanar spinal deformity and to assess the role of revision PRO in failed corrections. Material and methods. 50 patients were operated between 1996-2007 and followed up for 2 years (2-6). 27 had uniplanar kyphosis (60-128 degrees) and kyphoscoliosis was seen in 10. Failed corrections were seen in 11 uniplanar and 2 multiplanar deformities. The average pre-operative kyphosis and
Adverse spinopelvic characteristics (ASC) have been associated with increased dislocation risk following primary total hip arthroplasty (THA). A stiff lumbar spine, a large posterior standing tilt when standing and severe sagittal spinal deformity have been identified as key risk factors for instability. It has been reported that the rate of dislocation in patients with such ASC may be increased and some authors have recommended the use of dual mobility bearings or robotics to reduce instability to within acceptable rates (<2%). The aims of the prospective study were to 1: Describe the true incidence of ASC in patients presenting for a THA 2. Assess whether such characteristics are associated with greater symptoms pre-THA due to the concomitant dual pathology of hip and spine and 3. Describe the early term dislocation rate with the use of ≤36mm bearings. This is an IRB-approved, two-center, multi-surgeon, prospective, consecutive, cohort study of 220 patients undergoing THA through anterolateral- (n=103; 46.8%), direct anterior- (n=104; 27.3%) or posterior- approaches (n=13; 5.9%). The mean age was 63.8±12.0 years (range: 27.7-89.0 years) and the mean BMI 28.0±5.0 kg/m. 2. (range: 19.4-44.4 kg/m. 2. ). There were 44 males (47.8%) and 48 females (52.2%). The mean follow-up was 1.6±0.5 years. Overall, 54% of femoral heads was 32 mm, and 46% was 36mm. All participants underwent lateral spinopelvic radiographs in the standing and deep-flexed seated positions were taken to determine lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic-femoral angle (PFA) and pelvic incidence (PI) in both positions. Spinal stiffness was defined as lumbar flexion <20° when transitioning between the standing and deep-seated position; adverse standing PT was defined as >19° and adverse
Introduction. Post op cup anatomical and functional orientation is a key point in THP patients regarding instability and wear. Recently literature has been focused on the consequences of the transition from standing to sitting regarding anteversion, frontal and sagittal inclination. Pelvic incidence (PI) is now considered as a key parameter for the analysis of
Introduction. Upright body posture is maintained with the alignment of the spine, pelvis, and lower extremities, and the muscle strength of the body trunk and lower extremities. Conversely, the posture is known to undergo changes with age, and muscle weakness of lower extremities and the restriction of knee extension in osteoarthritis of the knee (knee OA) have been considered to be associated with loss of natural lumbar lordosis and abnormal posture. As total knee arthroplasty (TKA) is aimed to correct malalignment of lower extremities and limited range of motion of knee, particularly in extension, we hypothesized that TKA positively affects the preoperative abnormal posture. To clarify this, the variation in the alignment of the spine, pelvis, and lower extremities before and after TKA was evaluated in this study. Patients and methods. Patients suffering from primary knee OA who were scheduled to receive primary TKA were enrolled in this study. However, patients with arthritis secondary to another etiology, i.e. rheumatoid arthritis, trauma, or previous surgical interventions to the knee, were excluded. Moreover, patients who suffered from hip and ankle OA, cranial nerve diseases, or severe spinal deformity were also excluded. The sagittal vertical axis (SVA), the horizontal distance between the posterosuperior aspect of the S1 endplate surface and a vertical plumb line drawn from the center of the C7 vertebral body, is an important index of
Introduction. The viscoelastic lumbar disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer; it provides 6 full degrees of freedom about the 3 axes including shock absorption. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses. This study reports the results of a prospective series of 120 patients who are representative of the current use of the ESP implant since 2006. Material and methods. The surgeries were performed by 2 senior surgeons. There were 73 women and 47 men in this group. The average age was 42 (27–60). The average body mass index was 24.2 kg/m2 (18–33). The implantation was single level in 89% of cases. 134 ESP prostheses were analyzed. Clinical data and X-rays were collected at the preoperative time and at 3, 6, 12, 24, and 36 months post-op. The functional results were measured using VAS, GHQ 28, ODI, SF-36, (physical component PCS and mental component MCS. The analysis was performed by a single observer who was independent from the selection of patients and from the surgical procedure. Results. The mean operative time was 92 min (SD: 49 min). The mean blood loss was 73 cc (SD: 162 cc). We did not observe device-related specific complications. All clinical outcomes significantly improved at every time points when compared to the pre-operative status (table 1). In the series, 89% of patients had a good or excellent result at 3 months, 88% at 6 and 12 months, and 93% at 24 months. Conclusion. The concept of the ESP prosthesis is different from that of the articulated devices currently used in the lumbar spine. This study reports encouraging clinical results about pain, function, kinematic behavior and radiological
Purpose. Spinopelvic parameters describe the orientation, shape, and morphology of the spine and pelvis. In children without spinal deformity, these parameters have been shown to change during the first ten years of life; however, spinopelvic parameters have yet to be defined in children with significant Early Onset Scoliosis (EOS). The purpose of this study is to examine the effects of EOS on sagittal spinopelvic alignment. Method. Standing, lateral radiographs of 82 untreated patients with EOS greater than 50 degrees were evaluated. Sagittal spine parameters (sagittal balance, thoracic kyphosis (TK), lumbar lordosis (LL)) and sagittal pelvic parameters (pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), modified pelvic radius angle (PR)) were measured. These results were compared to those reported by Mac-Thiong et al (Spine, 2004) for a group of asymptomatic (i.e. without spinal deformity) children of similar age. Results. These patients had a mean age of 5.17 years and mean scoliosis of 73.3 17.3. Mean sagittal spine parameters were:
Nowadays many new minimally invasive techniques are experienced to perform lower lumbar interbody fusion in attempt to decrease the complications related to open anterior approach. AxiaLIF (axial lumbar interbody fusion) system is a percutaneous transacral approach that exploits the virtual presacral retroperitoneal space to perform annulus-sparing discectomy and interbody instrumented fusion of lower lumbar disc spaces. Additioning posterior percutaneous instrumentation, a robust axial construct is placed which restores disc height,
Pelvic incidence is as a key factor for
The aetiologies of common degenerative spine, hip, and knee pathologies are still not completely understood. Mechanical theories have suggested that those diseases are related to sagittal pelvic morphology and spinopelvic-femoral dynamics. The link between the most widely used parameter for sagittal pelvic morphology, pelvic incidence (PI), and the onset of degenerative lumbar, hip, and knee pathologies has not been studied in a large-scale setting. A total of 421 patients from the Cohort Hip and Cohort Knee (CHECK) database, a population-based observational cohort, with hip and knee complaints < 6 months, aged between 45 and 65 years old, and with lateral lumbar, hip, and knee radiographs available, were included. Sagittal spinopelvic parameters and pathologies (spondylolisthesis and degenerative disc disease (DDD)) were measured at eight-year follow-up and characteristics of hip and knee osteoarthritis (OA) at baseline and eight-year follow-up. Epidemiology of the degenerative disorders and clinical outcome scores (hip and knee pain and Western Ontario and McMaster Universities Osteoarthritis Index) were compared between low PI (< 50°), normal PI (50° to 60°), and high PI (> 60°) using generalized estimating equations.Aims
Methods