The use of impacted, morsellised bone grafts has become popular in revision total hip arthroplasty (THA). The initial stability of the reconstruction and the effectiveness of any subsequent process of revitalisation and incorporation will depend on the mechanical integrity of the graft. Our aim in this study was to document the time-dependent mechanical properties of the morsellised graft. This information is useful in clinical application of the graft, in studies of migration of the implant and in the design of the joint. We used 16 specimens of impacted, morsellised cancellous bone from the sternum of goats to assess the mechanical properties by confined compression creep tests. Consideration of the graft material as a porous, permeable solid, filled with fluid, allowed determination of the compressive modulus of the matrix, and its permeability to fluid flow. In all specimens the compression tests showed large, irreversible deformations, caused by flow-independent creep behaviour as a result of rolling and sliding of the bone chips. The mean permeability was 8.82 *10−12 m4/Ns (SD 43%), and the compressive modulus was 38.7 MPa (SD 34%). No correlation was found between the apparent density and the permeability or between the apparent density and the compressive modulus. The irreversible deformations in the graft could be captured by a creep law, for which the parameters were quantified. We conclude that in clinical use the graft is bound to be subject to permanent deformation after operation. The permeability of the material is relatively high compared with, for example, human cartilage. The confined compression modulus is relatively low compared with cancellous bone of the same apparent density. Designs of prostheses used in revision surgery must accommodate the viscoelastic and permanent deformations in the graft without causing loosening at the interface.
Patients report similar or better pain and function before revision hip arthroplasty than before primary arthroplasty but poorer outcomes after revision surgery. The trajectory of post-operative recovery during the first 12 months and any differences by type of surgery have received little attention. We explored the trajectories of change in pain and function after revision hip arthroplasty to 12-months post-operatively and compared them with those observed after primary hip arthroplasty. We conducted a single-centre UK cohort study of patients undergoing primary (n = 80) or revision (n = 43) hip arthroplasty. WOMAC pain and function scores and 20-metres walking time were collected pre-operatively, at 3 and 12-months post-operatively. Multilevel regression models were used to chart and compare the trajectories of post-operative change (0–3 months and 3–12 months) between the types of surgery. Patients undergoing primary arthroplasty had a total hip replacement (n=74) or hip resurfacing (n=6). Osteoarthritis was the indication for surgery in 92% of primary cases. Patients undergoing revision arthroplasty had
Our aim was to determine if the serum levels of bone-resorbing cytokines (IL-1β, TNF-α, IL-6, GM-CSF) are altered in patients with aseptic loosening of a total hip prosthesis, and if such levels are influenced by the type of implant. We determined cytokine levels in sera from 35 patients before
The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.Objectives
Methods
Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth.
Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.
Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed.